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Abstract— Neuraminidase (NA) genes of influenza A virus
is a highly potential candidate for antiviral drug development
that can only be realized through true identification of its sub-
types. In this paper, in order to accurately detect the sub-types,
a hybrid predictive model is therefore developed and tested
over proteins obtained from the four subtypes of the influenza
A virus, namely, H1N1, H2N2, H3N2 and H5N1 that caused
major pandemics in the twentieth century. The predictive model
is built by the following four main steps; (i) decoding the protein
sequences into numerical signals by means of EIIP amino acid
scale, (ii) analysing these signals (protein sequences) by using
Discrete Fourier Transform (DFT) and extracting DFT-based
features, (iii) selecting more influential sub-set of the features
by using the F-score statistical feature selection method, and
finally (iv) building a predictive model on the feature sub-set by
using support vector machine classifier. The protein sequences
were chosen as to be of high percentage identity that they
demonstrate within individual influenza subtype classes and
high variation that they display in the percentage identity. This
makes the proteins very difficult to distinguish from each other
even they belong to different subtypes. Given this set of the
proteins, the predictive model yielded 98.3% accuracy based on
a 5-fold cross validation. This also results in a twenty feature
sub-set that can also help reveal spectral characteristics of the
subtypes. The proposed model is promising and can easily be
generalized for other similar studies.

Index Terms— Amino Acid Indices, Discrete Fourier Trans-
form (DFT), F-score, Neuraminidase Genes, Support Vector
Machines

I. INTRODUCTION

In recent years, decoding the rules that drive biological
functions of influenza subtypes directly from their primary
structures, has become a subject of intensive research. Signal
processing-based techniques such as Resonant Recognition
Model (RRM) [1]–[3] and Complex Resonant Recognition
Model (CRRM) [4] have been introduced in bioinformatics
to extract information that is expected to match protein
biological functions. The study is performed using the al-
gorithms that help derive meaningful knowledge from the
proteins based on features extracted from the signal process-
ing techniques.

For this study different neuraminidase (NA) genes of in-
fluenza A virus subtypes are selected and presented including
H1N1, H2N2, H3N2 and H5N1 NA subtypes. These protein
sequences were chosen for the high percentage identity they
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demonstrate within individual influenza subtype classes and
the high variation they display in percent identity.

In the literature various methods exist that can extract
features directly from protein sequence primary structure
with one example being the Basic Local Alignment Search
Tool (BLAST) [5]. These methods perform very accurately
for high homology sequences, whereas their performance
is considerably decreased for low homology sequences.
Therefore, a new homology independent method is needed
to be developed in order to extract features from the primary
sequence structure and to be able to identify all the important
features that can be related to the bioinformatics problem,
and to discard any ineffective or noisy data.

Signal processing techniques can generate a large amount
of information, which can be related to a protein’s bio-
logical function. The RRM and CRRM are only two of
the techniques that try to identify which of the features
extracted are related to the protein’s biological function. In
this study, F-Score and Support Vector Machine (SVM) [6],
[7] are utilized to be able to determine if a feature, or a set
of features, extracted from protein sequences using signal
processing techniques can be used to characterise different
protein classes.

In this paper, SVM is implemented to create a classi-
fication model, which can be used to model relationships
between protein sequences. SVM is a supervised statistical
learning method that analyses data and recognises patterns
for classification [6], [7]. The SVM takes a set of input
data and predicts to which of two or more possible classes
each given input protein belongs. SVM is selected as it
can produce accurate and robust classification results on a
established theoretical basis even when input data are noisy
or non linearly separable [8], [9]. The predictive model
obtained by SVM with the complete data set is presented
to show the more representative subgroups and classification
models created for the influenza A virus problem.

The paper is organised as follows: Section II presents
the methods and materials used in this paper including the
protein sequences that belong to the NA genes (Section II-
A), the signal processing method, namely Discrete Fourier
Transform, used to extract protein related features (Section
II-B), Feature selection using F-score (Section II-C) and
SVM-based classifier (Section II-D). Section III presents
a case study with influenza subtypes sequences and the
results obtained by SVM. Finally, conclusions are discussed
in Section IV.
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II. METHODS AND MATERIALS

A. Protein sequences for influenza A virus subtypes in Neu-
raminidase genes

Influenza A virus belongs to the orthomyxoviridae family
of viruses and can affect mainly birds and some mammals.
The Influenza A virus genome consists of eight single genes;
the hemagglutinin (HA) gene, the neuraminidase (NA) gene,
the nucleoprotein (NP) gene, the matrix proteins (M) gene,
the non-structural proteins (NS) gene and three RNA poly-
merase (PA, PB1, PB2) genes. Human pandemics outbreaks
rarely arise when the influenza A virus is transmitted from
wild birds to domestic poultry. During the twentieth century,
three major influenza pandemics were recorded, which were
caused by H1N1, H2N2, and H3N2 viruses. In addition, the
H5N1 virus is considered as a current pandemic thread. For
this analysis, as Table I shows, four different subtypes of
Influenza A virus Neuraminidase (NA) gene were used, as it
is the target for current antiviral drugs, called neuraminidase
inhibitors [10].

TABLE I
INFLUENZA A VIRUS NEURAMINIDASE PROTEINS

Subtype No of Sequences Period
H1N1 200 2009
H2N2 76 1957-1968
H3N2 200 1968-2000
H5N1 70 2005-2009

For influenza A subtypes 200 H1N1 NA proteins from
2009, 76 H2N2 NA proteins from the period 1957-1968, 200
H3N2 NA proteins from the period 1968-2000 and 70 H5N1
NA proteins from the period 2005-2009 were collected from
the Influenza Virus Resource data set [11]. The relationship
of influenza subtypes in respect of NA gene is shown in the
following:

• H1N1 from 2009 is the result of reassortment between
Eurasian H1N1 influenza A swine virus and H1N2
swine virus [12]. H1N1 retains the NA gene from
Eurasian H1N1 influenza A swine virus.

• H2N2 from the period 1957-1968 is the result of
reassortment between existing human H1N1 and avian
H2N2 viruses [12]. H2N2 retains the NA gene from the
avian H2N2 virus.

• H3N2 from the period 1968-2000 is the result of re-
assortment between circulating human H2N2 and avian
H3 viruses [12]. H3N2 retains the NA gene from human
H2N2 virus.

• H5N1 from the period 2005-2009 was created by com-
bining various influenza A subtype viruses [13] where
H5N1 retains the NA gene from avian H1N1 virus.

Percentage identity is a measurement used to determine the
similarity between protein sequences. By using CLUSTALW
[12], the pairwise percent identity of all the influenza A NA
genes was calculated. Table II shows the average percent
identity between all the classes.

As Table II shows, the percent identity within each in-
dividual influenza subtype class is very high yielding 93%,

TABLE II
AVERAGE PAIRWISE PERCENT IDENTITY

H1N1 H2N2 H3N2 H5N1
H1N1 93% - - -
H2N2 42% 96% - -
H3N2 40% 86% 94% -
H5N1 83% 43% 41% 96%

96%, 94% and 96% for H1N1 NA, H2N2 NA, H3N2 NA
and H5N1 NA influenza A subtypes. In contrast to the
individual class, percent identity from different classes may
vary significantly, with high average percent identity of 83%
between H1N1 and H5N1 and 86% between H2N2 and
H3N2. Very low average percent identity was determined
between H1N1 and H2N2 with 42%, H1N1 and H3N2
with 40%, H5N1 and H2N2 with 43%, and finally H5N1
and H3N2 with 41% average percent identity. The pairwise
percent identity results presented in Table II suggest that
two subtype pairs (H1N1 and H5N1) and (H2N2 and H3N2)
contain highly similar proteins meaning that it is much more
difficult to distinguish the proteins from each other compared
to other subtype pairs.

B. Signal Processing For Protein Sequence Analysis

By using digital signal processing techniques, the goal
is to extract information that can be related to biological
functions of proteins. Various methods have been used in
bioinformatics for analysing protein sequences in recent
years, and one of the most common methods is the RRM
[1]–[3] and CRRM [4]. Previous studies [14] used influenza
A subtypes to analyse the hemagglutinin (HA) gene, with
RRM aiming to identify new therapeutic targets for drug
development by better understanding the interaction of the
influenza virus and its receptors.

In contrast to previous studies, the analysis was performed
directly to absolute spectrum, which is derived by applying
Discrete Fourier Transform (DFT) to each numerical encoded
protein sequence. Electron-ion interaction potential (EIIP)
[15], [16] amino acid index, as shown in Table III, is used
to turn protein sequences into numerical sequences in order
to be able to apply DFT. For the analysis of influenza A
virus proteins, as the sequences have different lengths, zero-
padding was used to extend all the protein sequences to
N = 512 thus the output of the absolute spectrum contains
256 features.

TABLE III
EIIP VALUES

Amino acid EIIP Amino acid EIIP
Leu 0.0000 Tyr 0.0516
Ile 0.0000 Trp 0.0548

Asn 0.0036 Gln 0.0761
Gly 0.0050 Met 0.0823
Glu 0.0057 Ser 0.0829
Val 0.0058 Cys 0.0829
Pro 0.0198 Thr 0.0941
His 0.0242 Phe 0.0946
Lys 0.0371 Arg 0.0959
Ala 0.0373 Asp 0.1263
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C. Feature Selection Using F-score

Feature selection [17], [18] is the technique of selecting
relevant features for building robust classification models.
Furthermore, feature selection is a particularly important step
in analysing the data from many experimental techniques
as they often include a large number of variables but low
number of samples. By removing redundant features from
the data, feature selection can improve the performance of
classification techniques like SVM in the following ways:

• Reduce data dimensionality.
• Improve the generalisation capability of the classifica-

tion model.
• Speed up learning process.
• Improve model interpretability.
F-score is one of the simplest but effective techniques that

measures the separation of two sets of real numbers [19].

D. Support Vector Machines

A support vector machine, (SVM) [6], [7] is a supervised
statistical learning method that analyses data and recognises
patterns for classification. The SVM takes a set of input data
and predicts to which of two possible classes each given
input belongs. SVM is used in this analysis as it can produce
accurate and robust classification results on a established
theoretical basis even when input data are noisy or non
linearly separable [8], [9]. For this analysis the LIBSVM [20]
tool was used to build a classification model. Furthermore,
a 5-fold cross-validation was used in combination with F-
score to find the optimum number of features that can be
used to predict Influenza A neuraminidase subtypes without
sacrificing any accuracy. In addition, grid search was used to
find the optimal SVM parameters for the predictive model.

III. RESULTS AND DISCUSSIONS

By using SVM and F-score, a classification model was
constructed for the Influenza A neuraminidase gene subtypes.
By using F-score the goal is to select the most separable
features extracted from influenza subtypes and create a
predictive model without sacrificing any of the accuracy
obtained by using all the features extracted. Figure 1 shows
F-score value for all the features extracted from the protein
sequences.

In order to build an accurate and generalised predictive
model, 5-fold cross-validation was used. In combination with
F-score, the minimum number of useful features that can be
used to predict Influenza A neuraminidase subtypes without
sacrificing any accuracy was found to be 20. This number
of features was discovered by manually eliminating features
with the lowest F-score and repeating the analysis. Table IV
shows the best 20 stratified spectral characteristic features
along with their F-score values.

The total accuracy for the complete data set is 0.983 ±
0.006. As the results show, good precision in classifying
new protein sequences can be obtained. An analysis for each
influenza subtype can be observed below:

• For the H1N1 subtype class the average accuracy is
1.0±0.0.

TABLE IV
TOP 20 FEATURES IN ORDER OF IMPORTANCE BASED ON F-SCORE

Feature Score Feature Score
1 39 25.0333 11 116 12.1021
2 9 20.8762 12 136 11.8541
3 97 20.8564 13 79 11.6046
4 8 20.7845 14 90 11.4991
5 38 15.2451 15 192 10.3009
6 98 15.0310 16 117 9.9620
7 209 13.9315 17 234 9.8864
8 7 13.1166 18 252 9.1989
9 197 12.9016 19 236 9.1070
10 111 12.6627 20 113 8.9069

TABLE V
CONFUSION MATRIX FOR SVM PREDICTIVE MODEL

Class H1N1 H2N2 H3N2 H5N1
H1N1 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
H2N2 0.00 ± 0.00 0.92 ± 0.05 0.08 ± 0.05 0.00 ± 0.00
H3N2 0.00 ± 0.00 0.01 ± 0.01 0.99 ± 0.01 0.00 ± 0.00
H5N1 0.04 ± 0.04 0.00 ± 0.00 0.00 ± 0.00 0.96 ± 0.04

• For the H2N2 subtype class the average accuracy is 0.92
± 0.05, where the misclassified proteins were as H3N2.

• For the H3N2 subtype class the average accuracy is 0.99
± 0.01, where the misclassified proteins were as H2N2.

• For the H5N1 subtype class the average accuracy is 0.96
± 0.04, where the misclassified proteins were as H1N1.

This analysis shows a strong correlation between the
features extracted and refined using F-score with protein
percentage identity between classes as shown in Table II.
Subtypes that present low percentage identity between them,
are classified with very high accuracy. The most challenging
part is to separate subtypes that present high percentage iden-
tity between them. As the bibliography indicates [12], [13],
there is a clear biological connection between these influenza
subtypes. Despite considerably much higher homology that
exists in two subtype pairs (H1N1 and H5N1) and (H2N2
and H3N2), the predictive model seems to have overcome
this problem yielding near perfect predictive accuracy of 96%
and 99%, respectively.

IV. CONCLUSIONS

The paper presents a highly successful predictive model
with an accuracy of 98.3% that has helped distinguish
the four subtypes (H1N1, H2N2, H3N2 and H5N1) that
belong to the Neuraminidase (NA) genes of influenza A
virus that has recently been regarded as highly potential
antiviral drug candidate. It is particularly worth noting that
although considerably much higher homology is observed in
two subtype pairs (H1N1 and H5N1) and (H2N2 and H3N2),
the predictive model seems to have overcome this problem
yielding near perfect predictive accuracy of 96% and 99%,
respectively. In addition, it has been demonstrated that the
signal processing technique, namely Discrete Fourier Trans-
form, was found to generate useful spectral characteristic
features that are highly capable of representing the protein
groups and that this was further enhanced using the F-score
feature selection method and SVM-based classifier.
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Fig. 1. Feature Scores Based on F-score

In addition to the EIIP amino acid index (Table III) used
in this study, there are over 500 amino acid indices reported
in the literature [21] that can represent different biological
features. They can therefore be used to construct different
models in future studies in order to identify which of these
amino acid scales is more representative of these subtypes as
well as others. This is required as to monitor future outbreaks
more accurately and identify better drug candidates, which
can only be realized through true identification of the sub-
types.
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