

�

Abstract² Classifying Microarray data, which are of high

dimensional nature, requires high computational power.

Support Vector Machines-based classifier (SVM) is among the

most common and successful classifiers used in the analysis of

Microarray data but also requires high computational power

due to its complex mathematical architecture. Implementing

SVM on hardware exploits the parallelism available within the

algorithm kernels to accelerate the classification of Microarray

data. In this work, a flexible, dynamically and partially

reconfigurable implementation of the SVM classifier on Field

Programmable Gate Array (FPGA) is presented. The SVM

architecture achieved up to 85x speed-up over equivalent

general purpose processor (GPP) showing the capability of

FPGAs in enhancing the performance of SVM-based analysis of

Microarray data as well as future bioinformatics applications.

Keywords² Bioinformatics, Field Programmable Gate Array,

General Purpose Processor, Microarray, Support Vector

Machine, Dynamic Partial Reconfiguration.

I. INTRODUCTION

Recent advances in biotechnologies have resulted in
generation of overwhelming amount of high throughput
biological data. Microarray, which is used to measure the
expression profiles of tens of thousands genes
simultaneously is one of the main contributors to the big
data. Processing Microarray data is necessary as to extract
the biological relevance embedded within the data, but this
task is highly computational. Pre-processing Microarray data
results in numeric matrices of gene expression profiles across
variable samples which should further be analyzed by using
supervised or unsupervised computational learning
algorithms to transform the numeric matrices into medical
knowledge. This type of Microarray data analysis has helped
scientists in identifying genes associated with diseases or
conditions (e.g., cancers), discovering drugs, personalizing
treatment plans, and predicting treatment outcomes. In
addition, more efforts are paid towards learning more about
the regulation and interaction between genes to uncover new
classes of tumours and to develop genomic based predictive
models [1]-[5].

Hanaa M. Hussain, is with the Electronics Engineering Department,

College of Technological Studies, The Public Authority of Applied

Education and Training, Shuwaikh 70654, Kuwait (e-mail:

hmh.hussain@paaet.edu.kw).

Khaled Benkrid, is with the School of Engineering and Electronics, The

University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh EH9

3JL, U.K. (e-mail: k.benkrid@ed.ac.uk).

Huseyin Seker is with the Bio-Health Informatics Research Group,

Centre for Computational Intelligence, De Montfort University, Leicester,

LE1 9BH, U.K., (e-mail: hseker@dmu.ac.uk).

*Corresponding Author (hmh.hussain@paaet.edu.kw)

There have been different classifier architectures applied to

Microarray data for prognostic and diagnostic decision

making by evaluating a set of the genes that are found to

have been associated with diseases or conditions [4]-[5].

Support Vector Machine-based classifier architecture (SVM)

is one of the widely used classifiers in analyzing Microarray

data and has been shown to perform better than those

reported in the literature, mainly due to its capability of

dealing with high dimensional data, flexibility in choosing a

similarity function and ability to identify outliers [4]. In

addition, SVM is characterized as having kernels that can be

parallelized leading to increased performance [6]. Taking

this concept into consideration, in this work, a Field

Programmable Gate Array (FPGA) implementation of the

SVM classifier is proposed and tested to assess the viability

of FPGAs as efficient high performance solution in the

analysis of bio-medical data, particularly in Microarray as a

case study.

The rest of the paper is organized as follows; Section II
will provide background on FPGAs and SVM, and Section
III will summarize relevant works on the area. Section IV
will then present the FPGA architecture of the SVM
classifier. In section V, the implementation results will be
presented. Finally, the conclusion and future work will be
stated in Section VI.

II. BACKGROUND

A. FPGAs

FPGAs are reconfigurable computing platforms which
have been evolving at a rapid pace over the last three
decades, growing as Integrated Circuits (ICs) of few
hundreds of logic gates to several millions, and integrating
other heterogeneous resources within the IC. FPGAs are
based on ICs containing enormous amount of small logic
cells that can be configured or programmed to carry out
many logical operations specified in the Hardware
Description Language (HDL) code [7].

One of the main advantages of FPGAs is that they can be
configured to execute multiple instructions in parallel and
can pipeline tasks leading to high computing performance.
The level of parallelism inherent in FPGAs is responsible for
their popularity in applications requiring high performance,
given that such applications lend themselves to hardware
implementations. Today, FPGAs have been successfully
used as accelerators to many applications serving as
coprocessors to general purpose processors (GPPs) [8].

B. Support Vector Machine

The Support Vector Machine (SVM)-based classification
is used to assign a class label to a new sample whose class

Reconfiguration-Based Implementation of SVM Classifier on FPGA

for Classifying Microarray Data

Hanaa M. Hussain*, Khaled Benkrid and Huseyin Seker

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 3058

label is to be predicted by learning from a set of data with
known class labels. SVM consists of two discreet phases;
one is the training phase while the other is the evaluation of
the decision function or the classification phase. During the
training phase, SVM estimates a function which classifies the
data into two classes by forming a hyperplane that
maximizes the separation of the two classes [9]. SVM deals
mainly with problems of binary classes (e.g., class label= 1
or class label= -1), and when multi-class problems are used,
WKH�690�LV�SHUIRUPHG�RQ�WZR�FODVVHV¶�DW�D�WLPH until all the
classes are covered.

Given a training set (xi,yi), where i=0 to N-1 (N is the

number of training samples), xi
M�� are the training

features, M is the number of features or dimensions, and yi
�

{-1,1} being the known classifications of all the training
samples. The classification function of linearly separable
training data is given in (1) [10]:

b,w.xf(x) � (1)

where b is the bias or the distance between the hyperplane
and the origin, and w is a normal vector of the separating
hyperplane. The hyperplane seeks the maximization of the
distance between two soft margins through the minimization
of the norm w for linearly separable training data. The
minimization of w leads to applying a Lagrangian function
given in (2) to optimize the solution [9]:

� �> @^ `¦
�

���
1

0

2

1
2

N

i

iii ybw.x
w

),b,w(L DD , (2)

ZKHUH� .iµV� DUH� WKH� /DJUDQJH� PXOWLSOLHUV�� /� KDV� WR� EH�
minimized with respect to w and b; and maximized with
UHVSHFW�WR�.i > 0. Based on the Kühn-Tucker theorem, which
LPSOLHV� WKDW� IRU� DQ� RSWLPXP�K\SHUSODQH��.i must be �����Z�
can be expressed as in (3) for linear SVM.

w ¦
�

1

0

N

i

iii xy D (3)

Substituting (3) into (2) and applying the associated
constrains leads to the dual formulation given in (4).

,)x,x(Kyy)L(ji

N

j,i

jiji

N

i

i
»
»

¼

º

«
«

¬

ª
� ¦¦

�

�

1

0

1

0
2

1
DDDD (4)

00

1

0

t ¦
�

ii

N

i

i and,ygiven DD

The bias b is set to zero here assuming that the
hyperplane is passing through the origin. K(.) in (4) is the
kernel function which can be linear, Gaussian, or polynomial
as given in 5a, 5b and 5c, respectively:

� � jiji x.xx,xk
 (5a)

� � ¸
¹
·¨

©
§ �

22

2/

,
Vji xx

ji exxk
 (5b)

� � � � .x.xx,xk
p

jiji � 1 (5c)

The linear SVM classifier is considered for the hardware
implementation proposed in this paper; consequently the
linear kernel in (5a) is used leading to the transformation of
the classification function in (1) to (6):

 .).()(
1

0

bxxKyxf
N

i

jiii � ¦
�

D (6)

During the classification phase, the SVM classifier
performs the operation in (7a) to determine in what side of
the hyperplane the query vector Q lies as outlined in (7b) and
(7c), respectively [9]:

¸
¹

·
¨
©

§
 ¦

�

1

0

sgnClass(Q)Query
N

i

T

iii QxyD , (7a)

10Class(Q)Query CQ��t , (7b)

10Class(Q)Query ���� CQ , (7c)

where C1 and C-1 are the binary class labels associated with
yi. In this work, the proposed FPGA implementation
determines (7) for each query given that the training phase is
done off-line and the hardware design is supplied with
support vectors (SVs) having non-zero coefficients.

III. RELEVANT PREVIOUS WORKS

Most contributions on the FPGA implementation of the
SVM classification have mainly dealt with non-biomedical
data. The earliest work reported in the literature was in [6]
where the authors proposed and implemented a digital
architecture of SVM in FPGA targeting the training phase.
The work did not include acceleration results with respect to
GPP and it was mainly focused on proving the suitability of
the application to hardware implementation. The same
authors have various subsequent works, one was reported in
[11] where they presented FPGA core generator tool for
automatically generating Gaussian kernel SVM architecture
in VHDL based on user requirements entered using graphical
user interface (GUI) [11].

In [12], the authors reported SVM architecture that
performs the training phase based on Sequential Minimal
Optimization (SMO). The main contribution of the work was
to implement the SMO-SVM using DPR, whereby the
modular blocks performing the tasks associated with SVM
training were time multiplexed leading to saving in the area
occupied by the SVM core within the FPGA.

In [13], the authors reported a hardware implementation
of the SVM classifier which performs both training and
classification on FPGA based on three kernels: linear,
Gaussian, and polynomial. The architecture targeted disease
diagnosis based on using Microarray data which is closely
related to the work presented here. The authors achieved
superior performance in terms of classification, however they
did not compare the FPGA implementation with GPP. In
addition, a main drawback of their SVM architecture was its
area footprint

3059

In [14], the authors presented the FPGA implementation
of SVM classification targeting brain computer interface
assuming the training was performed off-line. When
comparing the FPGA implementation with an equivalent
GPP implementation, the FPGA performed worse in terms of
processing speed consuming twice more time than GPP. In
addition, the FPGA architecture was non-scalable and
limited to six dimensions only [14].

IV. ARCHITECTURE DESIGN OF THE PROPOSED MODEL

The proposed SVM architecture is a modular systolic
array consisting of four blocks as shown in Fig. 1, captured
in Verilog HDL to compute (6) and determine the sign in (7).

The first block is the memory, which is responsible for
storing the data (i.e., training and query data) and
broadcasting them to the second block. The second block is
the kernel computation block, the third and fourth blocks are
the accumulation and decision making blocks, respectively
which all will be described below.

The kernel computation block is partitioned into three
sub-blocks operating in two stages as shown in Fig. 2, which
are pipelined to perform portion of the computation. The
first sub-block consists of a systolic array of a number of SV
kernel PEs as detailed in Fig. 3(a) where each PE has the
role of receiving one SV feature every clock cycle (xij) along
with the corresponding query feature (Qj). One feature of the
query FIFO is read by the first kernel processing element
(PE) every clock cycle and propagated through the pipeline
allowing for parallel SV kernel computations as shown in
Fig. 3(a). In the first stage, the systolic array is known as
Multiplier A to basically compute (8):

¦
�

1

0

,A Multiplier

M

j

jjQx (8)

where xj is a support vector (SV) feature, Qj is the

corresponding query feature. The systolic array is fully

parallelized such that all the PEs work simultaneously to

compute (8). This operation is mainly facilitated by the

capability to obtain the needed feedstock for each PE

continuously from the local memory attached to each PE and

propagated through the pipeline as shown in Fig. 3(a). The

functionality of each PE is illustrated in Fig. 3(b). The

latency of the pipeline is M clock cycles, while the

throughput is one result per clock cycle. Consequently, for

processing one query vector, M+SV clock cycles are

required by the pipeline to finish the computation. Just after

a period of M-1 clock cycles, the second sub-block in the

kernel computation block known as Multiplier B starts

reading the training coefficients �.i) and the class labels (yi)

Memory

Kernel Computation

Accumulation

Decision Making

Figure 1. The modular blocks of the proposed SVM architecture.

�X
i
.Q .\

i

O

. y
iX

i
Q

�X
i
Q.y

i

Multiplier A Multiplier B

Kernel
Computation

Figure 2. Datapath of the kernel computation block.

associated with each SV from the Memory block to compute

the scalar product shown in (9):

ii yD BMultiplier . (9)

To be able to complete the computation of the kernel for
a single SV, the third sub-block shown in stage two of Fig. 2
combines the results of multipliers A and B to obtain the
final result as given in (10):

ii

M

j

jij yQX D¦
�

1

0

nComputatioKernel . (10)

 The third block of the SVM core is a simple add-and-
accumulate circuitry to accumulate the results as they come
in from the kernel computation block.

Finally, the fourth block known as the decision making
block determines the class label of the query based on the
sign of the accumulation result obtained, where class zero
distinguishes a diseased tissue and class one is a healthy one.
The aforementioned four blocks form together the complete
SVM core.

The DPR implementation of the SVM classifier is
constructed using XiliQ[¶� 3ODQ$KHDG� ������ WRRO� WR� FUHDWH�
various copies of the complete SVM core based on different
parameters (i.e., number of SVs, features, coefficients, and
wordlengths) which can be used to reconfigure the FPGA
during run-time. This DPR feature allows for swapping a
complete SVM core that is already placed on the FPGA with
another one while the device is running without interfering
with the operation of other tasks placed elsewhere on the
device.

V. IMPLEMENTATION RESULTS

The hardware implementation was tested on FPGA
platform board, namely, Xilinx ML 403 using synthetic
Microarray data of size that can be stored within the Block
RAMs of the available FPGA device. On the other hand, the
software implementation on GPP was based on Matlab
(R2009b) bioinformatics toolbox running on a 2.60 GHz
Pentium Dual-Core E5300, with 3 GB RAM workstation.
The toolbox includes an optimized SVM classification
function that can be easily utilized. The SVM core was
simulated first, then synthesized, mapped, placed and routed
using Xilinx ISE 12.2 to target the XC4VFX12 FPGA
available on board Xilinx ML 403 platform board [15]-[16].

3060

FIFO
1

FIFO
2

FIFO
3

FIFO
4

FIFO
SVs

Query
FIFO

PE
1
 PE

2
 PE

3
PE

4
 PE

SVs

X
1j

X
2j

X
3j

X
4j

X
SVsj

Q
j

Q
j

Q
j Q

j
Q

j

�X
1j

Q
j

�X
2j

Q
j

�X
3j

Q
j

�X
4j

Q
j

��X
SVsj

)Q
j

(a)

X
ij

 out1
j
=Q

j

out2
j
= out2

j-1
+ X

ij
Q

j

 out2
0
=0

Q
j

PE
i

out2
j

out1
j

(b)

Figure 3. (a) The systolic array of Multiplier A where PEs perfom

multiplations in parallel. (b) The functionality of a single kernel PE.

The implemented design was based on the parameters;
B=8, M=1024, and SVs=20.The FPGA was first configured
using JTAG cable and then run. The implementation was
then WHVWHG� XVLQJ� ;LOLQ[¶� &KLS6FRSHTM Pro Analyzer 12.2
and checked against simulation results. The number of clock
cycles to classify one query was found to be 1048 cycles.
Table I summarizes the performance results of the FPGA and
GPP implementations, it shows that the FPGA
implementation outperformed the GPP implementation by
~61 times. As for the area footprint, the SVM core occupied
31% of the device area.

The same design was also implemented using a higher
end FPGA, namely ;LOLQ[¶ XC4VSX35, achieving the results
shown in Table 1 whereby the hardware design attained a
speed-up of ~85 times over an equivalent GPP
implementation, this finding was based on simulation results
only due to the unavailability of this FPGA device.

As for the DPR implementation of the SVM classifier,
the full reconfiguration time required to place one SVM core
onto the FPGA chip was 202.78 ms based on using JTAG
cable as configuration port. On the other hand, the partial
reconfiguration time to replace the SVM core already
running on FPGA with a variant SVM core having different
parameters was 24.12 ms. As such, partially reconfiguring
the FPGA was found to be ~8x quicker than reconfiguring
the whole FPGA while maintaining the operation of other
tasks placed on the same FPGA. The latter is particularly
crucial when multiple users are sharing the FPGA since
reconfiguring the whole FPGA will interrupt their tasks.

VI. CONCLUSION AND FUTURE WORK

The proposed hardware implementation of the SVM

classifier on FPGA realizes high performance customized

solution applied to Microarray data analysis, which

outperforms GPPs in terms of execution. The FPGA

implementation of the SVM classifier is up to ~85 times

quicker than an equivalent implementation running on GPP.

Furthermore, the proposed implementation is adaptive to

user requirements. As for the DPR implementation, it was

found that partially reconfiguring the FPGA is ~8x faster

than full device reconfiguration. This means that changing

parameters in the SVM core can be performed quickly while

the device is running without interrupting other tasks. Thus,

TABLE I. SUMMARY OF TIMING PERFORMANCE OF THE SVM CORE

FPGA

Device

Clock Speed

(MHz)

GPP

Software (µs)

FPGA

(µs)

Speed- up

XC4VFX12 98.7 646 10.62 ~61

XC4VSX35 137.7 646 7.64 ~85

it can be stated that FPGAs provide high performance

solution for the analysis of Microarray data, and could be

applied to process other bio-medical data requiring high

computational power as a result of the continuous growth in

data throughputs. Future work will focus on implementing

SVM training on FPGA using DPR, testing with benchmark

datasets on state-of-the-art FPGAs, and implementing the

classification functions using different kernels. Furthermore,

FPGA architectures of the ensemble SVM classifier will be

implemented using DPR.

REFERENCES

[1] D. Stekel, Microarray Bioinformatics. Cambridge, U.K: Cambridge

Univ. Press, 2003.

[2] .�� /H� &DR� DQG� *�� 0F/DFKODQ�� ³6WDWLVWLFDO� $QDO\VLV� RQ� 0LFURDUUD\�

'DWD�� 6HOHFWLRQ� RI� *HQH� 3URJQRVLV� 6LJQDWXUHV�´� LQ� Computational

Biology: Issues and Application in Oncology (Applied Bioinformatics

and Biostatistics in Cancer Research series), 1st ed., T. Pham Ed.

New York : Springer, 2009, ch. 3, pp. 55±75.

[3] A.K. Jain, M.N. Murty, and P.J. FlynQ��³'DWD�&OXVWHULQJ��$�5HYLHZ�´

ACM Computing Surveys, vol. 31, no. 3, pp. 264±323, 1999.

[4] M. P. S Brown et al., ³.QRZOHGJH-Based Analysis of Microarray

Gene Expression Data UVLQJ� 6XSSRUW� 9HFWRU� 0DFKLQHV�´� in Proc.

Natl. Acad. Sci (PNAS), vol. 97, no. 1, pp. 262±267, Jan. 4, 2000.

[5] S. Mukherjee, ³&ODVVLI\LQJ� 0LFURDUUD\� 'DWD� 8VLQJ� 6XSSRUW� 9HFWRU�

0DFKLQHV�´� LQ�A Practical Approach to Microarray Data Analysis,

1st ed., D. Berrar et al., Eds. USA: Springer, 2009, ch. 9, pp. 1±19.

[6] '�� $QJXLWD�� ³$� 'LJLWDO� $UFKLWHFWXUH� IRU� 6XSSRUW� 9HFWRU� 0DFKLQHV��

Theory��$OJRULWKP��DQG�)3*$�,PSOHPHQWDWLRQ�´�IEEE Trans. Neural

Networks, vol. 12, no. 5, pp. 993±1009, Sep. 2003.

[7] D. Buell, T. El-Ghazawi, K. Gaj, anG� 9�� .LQGUDWHQNR�� ³+LJK�

Performance Reconfigurable Computing�´� ,(((�&RPSXWHU, vol. 40,

no. 3, pp. 23±27, Mar. 2007.

[8] T. El-Ghazawi et al.�� ³7KH� 3URPLVH� RI� +LJK-performance

5HFRQILJXUDEOH�&RPSXWLQJ�´�IEEE Computer, vol. 41, no. 2, pp. 69±

76, Feb. 2008.

[9] V. Vapnik, The Nature of Statistical Learning Theory. New York,

US: Springer-Verlag, 2000.

[10] N. Cristianini and J. Shawe-Taylor, An Introduction to Support

Vector Machines and other Kernel-Based Learning Methods. USA:

Cambridge University Press, 2000.

[11] '�� $QJXLWD�� /�� &DUOLQR�� $�� *KLR�� DQG� 6�� 5LGHOOD�� ³$�)3*$� &RUH�
Generator for Embedded Classification Systems�´� J. Circuits,

Systems, and Computers, vol. 20 , no. 2 , pp. 263±282, Apr. 2011.

[12] -�� *RPHV�)LOKR�� 0�� 5DIIR�� 0�� 6WUXP�� DQG� :�� -LDQJJ� &KDX�� ³$�
General-SXUSRVH� '\QDPLFDOO\� 5HFRQILJXUDEOH� 690�´� in Proc. 6th

Southern Programmable Logic Conference (SPL), Ipojuca, Brazil,

Mar. 24±26, 2010, pp. 107±112.

[13] -�� :RR�:HH� DQG� &�� +R� /HH�� ³&RQFXUUHQW� 6XSSRUW� 9HFWRU�0DFKLQH�
PrRFHVVRU� IRU�'LVHDVH�'LDJQRVLV�´� LQ�Neural Information Processing

(Lecture Notes in Computer Science), Pal et al., Eds., Berlin

Heidelberg: Springer-Verlag, 2004, vol. 3316, pp. 1129±34.

[14] O. Pina-Ramirez, R. Valdes-Cristerna, and O. Yanez-6XDUH]�� ³$Q�

FPGA Implementation of Linear Kernel Support Vector MachLQHV�´�in

Proc. Int. Conf. on Reconfigurable Computing and FPGAs, San Luis

Potosi, Mexico, Sep. 27±29, 2006, pp. 1±6.

[15] ;LOLQ[�,QF���³;LOLQ[�0/����0/����0/����Evaluation Platform User

*XLGH� XJ����´� Y�� ����� ������ >2nline at http://www.xilinx.com.

accessed April 20, 2012].

[16] ;LOLQ[� ,QF��� ³9LUWH[-4 UseU� *XLGH� XJ���´�� Y�� ����� ������ >2nline at

http: //www.xilinx.com. accessed April 20, 2012].

3061

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

