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Abstract² Classifying Microarray data, which are of high 

dimensional nature, requires high computational power. 

Support Vector Machines-based classifier (SVM) is among the 

most common and successful classifiers used in the analysis of 

Microarray data but also requires high computational power 

due to its complex mathematical architecture. Implementing 

SVM on hardware exploits the parallelism available within the 

algorithm kernels to accelerate the classification of Microarray 

data. In this work, a flexible, dynamically and partially 

reconfigurable implementation of the SVM classifier on Field 

Programmable Gate Array (FPGA) is presented. The SVM 

architecture achieved up to 85x speed-up over equivalent 

general purpose processor (GPP) showing the capability of 

FPGAs in enhancing the performance of SVM-based analysis of 

Microarray data as well as future bioinformatics applications. 
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I. INTRODUCTION 

Recent advances in biotechnologies have resulted in 
generation of overwhelming amount of high throughput 
biological data. Microarray, which is used to measure the 
expression profiles of tens of thousands genes 
simultaneously is one of the main contributors to the big 
data. Processing Microarray data is necessary as to extract 
the biological relevance embedded within the data, but this 
task is highly computational. Pre-processing Microarray data 
results in numeric matrices of gene expression profiles across 
variable samples which should further be analyzed by using 
supervised or unsupervised computational learning 
algorithms to transform the numeric matrices into medical 
knowledge. This type of Microarray data analysis has helped 
scientists in identifying genes associated with diseases or 
conditions (e.g., cancers), discovering drugs, personalizing 
treatment plans, and predicting treatment outcomes. In 
addition, more efforts are paid towards learning more about 
the regulation and interaction between genes to uncover new 
classes of tumours and to develop genomic based predictive 
models [1]-[5]. 

 
Hanaa M. Hussain, is with the Electronics Engineering Department, 

College of Technological Studies, The  Public Authority of Applied 

Education and Training, Shuwaikh 70654, Kuwait (e-mail: 

hmh.hussain@paaet.edu.kw).  

Khaled Benkrid, is with the School of Engineering and Electronics, The 

University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh  EH9 

3JL, U.K. (e-mail: k.benkrid@ed.ac.uk). 

Huseyin Seker is with the Bio-Health Informatics Research Group, 

Centre for Computational Intelligence, De Montfort University, Leicester, 

LE1 9BH, U.K., (e-mail: hseker@dmu.ac.uk). 

*Corresponding Author (hmh.hussain@paaet.edu.kw) 

 

There have been different classifier architectures applied to 

Microarray data for prognostic and diagnostic decision 

making by evaluating a set of the genes that are found to 

have been associated with diseases or conditions [4]-[5]. 

Support Vector Machine-based classifier architecture (SVM) 

is one of the widely used classifiers in analyzing Microarray 

data and has been shown to perform better than those 

reported in the literature, mainly due to its capability of 

dealing with high dimensional data, flexibility in choosing a 

similarity function and ability to identify outliers [4]. In 

addition, SVM is characterized as having kernels that can be 

parallelized leading to increased performance [6]. Taking 

this concept into consideration, in this work, a Field 

Programmable Gate Array (FPGA) implementation of the 

SVM classifier is proposed and tested to assess the viability 

of FPGAs as efficient high performance solution in the 

analysis of bio-medical data, particularly in Microarray as a 

case study.    

The rest of the paper is organized as follows; Section II 
will provide background on FPGAs and SVM, and Section 
III will summarize relevant works on the area. Section IV 
will then present the FPGA architecture of the SVM 
classifier. In section V, the implementation results will be 
presented. Finally, the conclusion and future work will be 
stated in Section VI. 

II.       BACKGROUND 

A. FPGAs 

FPGAs are reconfigurable computing platforms which 
have been evolving at a rapid pace over the last three 
decades, growing as Integrated Circuits (ICs) of few 
hundreds of logic gates to several millions, and integrating 
other heterogeneous resources within the IC. FPGAs are 
based on ICs containing enormous amount of small logic 
cells that can be configured or programmed to carry out 
many logical operations specified in the Hardware 
Description Language (HDL) code [7]. 

One of the main advantages of FPGAs is that they can be 
configured to execute multiple instructions in parallel and 
can pipeline tasks leading to high computing performance. 
The level of parallelism inherent in FPGAs is responsible for 
their popularity in applications requiring high performance, 
given that such applications lend themselves to hardware 
implementations. Today, FPGAs have been successfully 
used as accelerators to many applications serving as 
coprocessors to general purpose processors (GPPs) [8]. 

B. Support Vector Machine 

The Support Vector Machine (SVM)-based classification 
is used to assign a class label to a new sample whose class 
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label is to be predicted by learning from a set of data with 
known class labels. SVM consists of two discreet phases; 
one is the training phase while the other is the evaluation of 
the decision function or the classification phase. During the 
training phase, SVM estimates a function which classifies the 
data into two classes by forming a hyperplane that 
maximizes the separation of the two classes [9]. SVM deals 
mainly with problems of binary classes (e.g., class label= 1 
or class label= -1), and when multi-class problems are used, 
WKH�690�LV�SHUIRUPHG�RQ�WZR�FODVVHV¶�DW�D�WLPH until all the 
classes are covered.   

Given a training set (xi,yi), where i=0 to N-1 (N is the 

number of training samples), xi 
M�� are the training 

features, M is the number of features or dimensions, and yi
�  

{-1,1} being the known classifications of all the training 
samples. The classification function of linearly separable 
training data is given in (1) [10]:  

b,w.xf(x) �     (1)                                                                   

where b is the bias or the distance between the hyperplane 
and the origin, and w is a normal vector of the separating 
hyperplane. The hyperplane seeks the maximization of the 
distance between two soft margins through the minimization 
of the norm w for linearly separable training data. The 
minimization of w leads to applying a Lagrangian function 
given in (2) to optimize the solution [9]:  
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ZKHUH� .iµV� DUH� WKH� /DJUDQJH� PXOWLSOLHUV�� /� KDV� WR� EH�
minimized with respect to w and b; and maximized with 
UHVSHFW�WR�.i > 0. Based on the Kühn-Tucker theorem, which 
LPSOLHV� WKDW� IRU� DQ� RSWLPXP�K\SHUSODQH��.i must be �����Z�
can be expressed as in (3) for linear SVM.    
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Substituting (3) into (2) and applying the associated 
constrains leads to the dual formulation given in (4). 
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The bias b is set to zero here assuming that the 
hyperplane is passing through the origin. K(.) in (4) is the 
kernel function which can be linear, Gaussian, or polynomial 
as given in 5a, 5b and 5c, respectively:  
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The linear SVM classifier is considered for the hardware 
implementation proposed in this paper; consequently the 
linear kernel in (5a) is used leading to the transformation of 
the classification function in (1) to (6): 
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During the classification phase, the SVM classifier 
performs the operation in (7a) to determine in what side of 
the hyperplane the query vector Q lies as outlined in (7b) and 
(7c), respectively [9]:   
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10Class(Q)Query ���� CQ ,                       (7c)                       

where C1 and C-1 are the binary class labels associated with 
yi. In this work, the proposed FPGA implementation 
determines (7) for each query given that the training phase is 
done off-line and the hardware design is supplied with 
support vectors (SVs) having non-zero coefficients. 

III. RELEVANT PREVIOUS WORKS 

Most contributions on the FPGA implementation of the 
SVM classification have mainly dealt with non-biomedical 
data. The earliest work reported in the literature was in [6] 
where the authors proposed and implemented a digital 
architecture of SVM in FPGA targeting the training phase. 
The work did not include acceleration results with respect to 
GPP and it was mainly focused on proving the suitability of 
the application to hardware implementation. The same 
authors have various subsequent works, one was reported in 
[11] where they presented FPGA core generator tool for 
automatically generating Gaussian kernel SVM architecture 
in VHDL based on user requirements entered using graphical 
user interface (GUI) [11].          

In [12], the authors reported SVM architecture that 
performs the training phase based on Sequential Minimal 
Optimization (SMO). The main contribution of the work was 
to implement the SMO-SVM using DPR, whereby the 
modular blocks performing the tasks associated with SVM 
training were time multiplexed leading to saving in the area 
occupied by the SVM core within the FPGA. 

In [13], the authors reported a hardware implementation 
of the SVM classifier which performs both training and 
classification on FPGA based on three kernels: linear, 
Gaussian, and polynomial. The architecture targeted disease 
diagnosis based on using Microarray data which is closely 
related to the work presented here. The authors achieved 
superior performance in terms of classification, however they 
did not compare the FPGA implementation with GPP. In 
addition, a main drawback of their SVM architecture was its 
area footprint   
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In [14], the authors presented the FPGA implementation 
of SVM classification targeting brain computer interface 
assuming the training was performed off-line. When 
comparing the FPGA implementation with an equivalent 
GPP implementation, the FPGA performed worse in terms of 
processing speed consuming twice more time than GPP. In 
addition, the FPGA architecture was non-scalable and 
limited to six dimensions only [14]. 

IV. ARCHITECTURE DESIGN OF THE PROPOSED MODEL 

The proposed SVM architecture is a modular systolic 
array consisting of four blocks as shown in Fig. 1, captured 
in Verilog HDL to compute (6) and determine the sign in (7).  

The first block is the memory, which is responsible for 
storing the data (i.e., training and query data) and 
broadcasting them to the second block. The second block is 
the kernel computation block, the third and fourth blocks are 
the accumulation and decision making blocks, respectively 
which all will be described below.  

The kernel computation block is partitioned into three 
sub-blocks operating in two stages as shown in Fig. 2, which 
are pipelined to perform portion of the computation. The 
first sub-block consists of a systolic array of a number of SV 
kernel PEs as detailed in Fig. 3(a) where each PE has the 
role of receiving one SV feature every clock cycle (xij) along 
with the corresponding query feature (Qj). One feature of the 
query FIFO is read by the first kernel processing element 
(PE) every clock cycle and propagated through the pipeline 
allowing for parallel SV kernel computations as shown in 
Fig. 3(a). In the first stage, the systolic array is known as 
Multiplier A to basically compute (8): 
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where xj is a support vector (SV) feature, Qj is the 

corresponding query feature. The systolic array is fully 

parallelized such that all the PEs work simultaneously to 

compute (8). This operation is mainly facilitated by the 

capability to obtain the needed feedstock for each PE 

continuously from the local memory attached to each PE and 

propagated through the pipeline as shown in Fig. 3(a). The 

functionality of each PE is illustrated in Fig. 3(b). The 

latency of the pipeline is M clock cycles, while the 

throughput is one result per clock cycle. Consequently, for 

processing one query vector, M+SV clock cycles are 

required by the pipeline to finish the computation. Just after 

a period of M-1 clock cycles, the second sub-block in the 

kernel computation block known as Multiplier B starts 

reading the training coefficients �.i) and the class labels (yi)  
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Figure 1. The modular blocks of the proposed SVM architecture.  
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Figure 2. Datapath of the kernel computation block.   

associated with each SV from the Memory block to compute 

the scalar product shown in (9): 

ii yD BMultiplier .                                (9)                                  

To be able to complete the computation of the kernel for 
a single SV, the third sub-block shown in stage two of Fig. 2 
combines the results of multipliers A and B to obtain the 
final result as given in (10):  
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 The third block of the SVM core is a simple add-and-
accumulate circuitry to accumulate the results as they come 
in from the kernel computation block.  

Finally, the fourth block known as the decision making 
block determines the class label of the query based on the 
sign of the accumulation result obtained, where class zero 
distinguishes a diseased tissue and class one is a healthy one. 
The aforementioned four blocks form together the complete 
SVM core.  

The DPR implementation of the SVM classifier is 
constructed using XiliQ[¶� 3ODQ$KHDG� ������ WRRO� WR� FUHDWH�
various copies of the complete SVM core based on different 
parameters (i.e., number of SVs, features, coefficients, and 
wordlengths) which can be used to reconfigure the FPGA 
during run-time. This DPR feature allows for swapping a 
complete SVM core that is already placed on the FPGA with 
another one while the device is running without interfering 
with the operation of other tasks placed elsewhere on the 
device.  

V.  IMPLEMENTATION RESULTS 

The hardware implementation was tested on FPGA 
platform board, namely, Xilinx ML 403 using synthetic 
Microarray data of size that can be stored within the Block 
RAMs of the available FPGA device. On the other hand, the 
software implementation on GPP was based on Matlab 
(R2009b) bioinformatics toolbox running on a 2.60 GHz 
Pentium Dual-Core E5300, with 3 GB RAM workstation. 
The toolbox includes an optimized SVM classification 
function that can be easily utilized. The SVM core was 
simulated first, then synthesized, mapped, placed and routed 
using Xilinx ISE 12.2 to target the XC4VFX12 FPGA 
available on board Xilinx ML 403 platform board [15]-[16].  
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Figure 3. (a) The systolic array of Multiplier A where PEs perfom 

multiplations in parallel. (b) The functionality of a single kernel PE. 

The implemented design was based on the parameters; 
B=8, M=1024, and SVs=20.The FPGA was first configured 
using JTAG cable and then run. The implementation was 
then WHVWHG� XVLQJ� ;LOLQ[¶� &KLS6FRSHTM Pro Analyzer 12.2 
and checked against simulation results. The number of clock 
cycles to classify one query was found to be 1048 cycles. 
Table I summarizes the performance results of the FPGA and 
GPP implementations, it shows that the FPGA 
implementation outperformed the GPP implementation by 
~61 times. As for the area footprint, the SVM core occupied 
31% of the device area.  

The same design was also implemented using a higher 
end FPGA, namely ;LOLQ[¶ XC4VSX35, achieving the results 
shown in Table 1 whereby the hardware design attained a 
speed-up of ~85 times over an equivalent GPP 
implementation, this finding was based on simulation results 
only due to the unavailability of this FPGA device. 

As for the DPR implementation of the SVM classifier, 
the full reconfiguration time required to place one SVM core 
onto the FPGA chip was 202.78 ms based on using JTAG 
cable as configuration port. On the other hand, the partial 
reconfiguration time to replace the SVM core already 
running on FPGA with a variant SVM core having different 
parameters was 24.12 ms. As such, partially reconfiguring 
the FPGA was found to be ~8x quicker than reconfiguring 
the whole FPGA while maintaining the operation of other 
tasks placed on the same FPGA. The latter is particularly 
crucial when multiple users are sharing the FPGA since 
reconfiguring the whole FPGA will interrupt their tasks.                                                                         

VI. CONCLUSION AND FUTURE WORK 

The proposed hardware implementation of the SVM 

classifier on FPGA realizes high performance customized 

solution applied to Microarray data analysis, which 

outperforms GPPs in terms of execution. The FPGA 

implementation of the SVM classifier is up to ~85 times 

quicker than an equivalent implementation running on GPP. 

Furthermore, the proposed implementation is adaptive to 

user requirements. As for the DPR implementation, it was 

found that partially reconfiguring the FPGA is ~8x faster 

than full device reconfiguration. This means that changing 

parameters in the SVM core can be performed quickly while 

the device is running without interrupting other tasks. Thus,  

TABLE I.  SUMMARY OF TIMING PERFORMANCE OF THE SVM CORE 

FPGA 

Device 

Clock Speed 

(MHz) 

GPP  

Software (µs) 

FPGA  

(µs) 

Speed- up 

 

XC4VFX12 98.7 646 10.62 ~61 

XC4VSX35 137.7 646 7.64 ~85 

it can be stated that FPGAs provide high performance 

solution for the analysis of Microarray data, and could be 

applied to process other bio-medical data requiring high 

computational power as a result of the continuous growth in 

data throughputs. Future work will focus on implementing 

SVM training on FPGA using DPR, testing with benchmark 

datasets on state-of-the-art FPGAs, and implementing the 

classification functions using different kernels. Furthermore, 

FPGA architectures of the ensemble SVM classifier will be 

implemented using DPR.  
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