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Abstract— Fluorescent microscopy has been a popular and
important tool for studying live cells. One challenge of analyzing
cell images obtained from fluorescent microscopy is that cells in
fluorescent images frequently disappear and reappear, making
cell tracking difficult. In this paper, we present an image
registration approach which can reconstruct both the cell
appearance and location of the missing cells from the image
frames where the cells become invisible. The idea is to perform
an image registration on the images before and after a cell
disappears. The missing image frames between these two images
are given by the intermediate registration results. The formula-
tion is based on the nonrigid particle registration model, which
captures soft deformation of the cells. In addition, to obtain
natural and more rigid cell movements such as translation
and rotation, we propose a new registration technique which is
Killing energy minimizing, motivated by the fact that a Killing
vector field with zero Killing energy will generate an isometric
deformation. We will present reconstruction results of C2C12
cells in fluorescent images to illustrate the effectiveness of our
model by different numerical examples.

I. INTRODUCTION

In fluorescent microscopy [1], cells are tagged with protein
markers that will fluorescence when exposed to light of
specific wavelengths. The intensity of visible light emitted
depends on the environment and in particular, the amount
of the fluorophores which are components of the protein
markers that cause molecules to be fluorescent. The fluores-
cent part of a cell (in our experiments, the nucleus) shows
a distinct color which makes it easily distinguishable from
the background, yielding high contrast images suitable for
image analysis.

However, the intensities of the fluorophores may fluctuate
over time. When the intensity level is below certain thresh-
old, the cells may not be fluoresced. It has been observed
in the literature that cells in fluorescent images frequently
“disappear” [2]. Thus a cell may initially appear in an image
frame, but then later becomes invisible in the subsequent
frames. When the intensities of the fluorophores build up
again, the cell may “reappear” in later frames, possibly
at a different location. It is not clear if using different
fluorophores might prevent the problem.

The frequent disappearance and reappearance of cells pose
challenges to tracking cells in fluorescent images. When a

*This work was supported by the Natural Sciences and Engineering
Research Council of Canada.

1K. Chan is with the David R. Cheriton School of Com-
puter Science, University of Waterloo, Ontario N2L 3G1, Canada.
kyk2chan@uwaterloo.ca

2J. Wan is with the David R. Cheriton School of Computer
Science, University of Waterloo, Ontario N2L 3G1, Canada.
jwlwan@uwaterloo.ca

cell becomes invisible, it is not known if it will reappear and
if it does, when and where it will appear again. When a cell
eventually becomes visible, it may be mistakenly considered
as a nearby cell from the previous frame, rather than being
recognized as the missing cell from a number of frames
before. Manually connecting disappeared cells to reappeared
cells can be tedious and error prone.

While the issue of frequent cell disappearance is known, it
was seldom discussed in the literature. A recent approach [3]
addressed the issue by exploiting the temporal information.
Specifically, image frames are stacked together to form a
3D image volume [4]. In fluorescent images, cells often
appear as bright, convex shaped objects. The path of a cell
forms a “tube” in the image volume. The disappearance of
a cell creates a gap in the cell tube. A 3D-2D segmentation
model was developed which performs 2D segmentation to
capture the cells that appear in the image frames and 3D
segmentation to locate the missing cells. This technique was
later extended to reconstruct cells where cell divisions have
taken place [5].

The segmentation approach [3] is able to find the loca-
tions, or more precisely, the boundary of the missing cells.
However, it does not provide any information inside the
cell. The extended approach [5] attempts to estimate the
cell appearance by interpolation. It shows some intensity
variation inside the cell but hardly any details.

The importance of this research is to address the cell
disappearance issue by accurately reconstructing the invisible
cells so that cell tracking could be done more reliably. In
this paper, we propose the use of image registration method
to reconstruct the missing cells. The idea is to reconstruct
the location as well as the appearance of the cell on the
image frames where it is not visible by registering the
images of the cell before and after it disappears. However,
simply applying the standard nonrigid registration methods
will typically result in unnatural movement and shape of the
missing cell. Instead, we propose a novel image registration
technique based on minimizing the Killing energy. It is able
to reproduce the translation and rotational motions that often
occur in cell movements.

II. METHODOLOGY

The goal of the proposed registration technique is to recon-
struct both the appearance of the missing cell and its location.
The key idea is that connecting the two broken parts of a cell
tube can be viewed as an image registration process. More
precisely, consider the image right before the cell disappears
and another image right after it reappears. We perform an
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image registration to align these two images. During the
registration process parametrized by time t, one cell image
(the template), I1(x), evolves to align with the other cell
image (the target), I2(x). At the end of the process at time
t = T , the transformed template I1(x−r(x, T )) aligns with
the target I2(x), where r denotes the displacement. If we
put all the intermediate images, I1(x− r(x, t)), 0 ≤ t ≤ T ,
produced by the registration process together, they will then
form a 3D image volume in which a cell tube was formed by
the intermediate transformed template images that connects
the cells at the two ends.

Our approach is based on the particle nonrigid registration
model [6]. Nonrigid registration methods [7] have the advan-
tage of aligning cells of different shapes, which are necessary
for live cells. In the particle nonrigid registration approach,
the template image is modelled as a set of particles moving
towards the target image under an applied force. At any time
t, the displacement vector r(x, t) is given by the solution of
the following minimization problem:

min
r

∫
Ω

α

2
|I1(x−r(x, t))−I2(x)|2 dx+β

∫
Ω

1

2
‖u(x, t)‖2 dx,

(1)
where α, β are parameters, and u = dr/dt is the velocity.
The distance measure in (1) drives the registration process
while the kinetic energy regularization term minimizes the
motion. The interaction of the two terms move the template
to the target with minimal motion.

The particle registration model leads to the following
system of partial differential equations:

b(x, t) = α(I(x, t)− I2(x))
∇I(x, t)
‖∇I(x, t)‖

, (2)

∂u(x, t)

∂t
= b(x, t)− u(x, t) · ∇u(x, t), (3)

∂r(x, t)

∂t
= u(x, t)− u(x, t) · ∇r(x, t), (4)

where b(x, t) is the applied body force and I(x, t) =
I1(x − r(x, t)) denotes the deformed template. During the
registration process, in each time step, the function b(x, t)
generates a body force to deform the template towards the
target. Then the velocity is updated using the body force.
Note that the velocity equation (3) is derived based on
the Eulerian framework. Finally, the displacement r(x, t) is
updated using the velocity by (4).

As shown in Fig. 1 (top), the particle nonrigid registration
is able to correctly transform a circle (representing a cell)
from one position to another. However, the registration
process creates an unnatural motion of the circle from one
position to the other. Intuitively, one would expect a simple
translation, shown in Fig. 1 (bottom) but instead, the circle
shrinks on the left side and expands on the right side, which
would not be a desirable reconstruction of the circle between
the template and target.

A. Killing energy minimizing image registration

Nonrigid registration models allow objects to deform into
different shapes, but it usually does not produce rigid motions

Fig. 1. Registration results of a translated circle given by (top) the particle
model, and (bottom) the Killing energy minimizing model.

such as translation and rotation, which are common move-
ments of cells. Motions such as translation and rotation are
global where all points on the image move in the same way
and at same time. This might not usually happen in standard
nonrigid models since their registration process typically is
driven by the difference of the template and target. At the
region where an object on the template overlap with itself on
the target, there will be no difference and hence no motion.
As shown in Fig. 1, when a cell is moved to the right, a
standard nonrigid registration model would typically shrink
the cell towards the overlap region and then expand it to the
new position. The final alignment is still valid but the process
is not as intuitive, which is important to us for reconstructing
the missing cell.

To avoid this undesirable motion, we propose to incorpo-
rate Killing1 energy [8] for the velocity field u:

EK(u) ≡
∫
‖Ju(x) + Ju(x)

T ‖2F , (5)

into the registration model. Here Ju is the Jacobian of
the vector field u. Vector fields with zero Killing energy
are called Killing vector fields (KVFs). One useful and
important property of KVFs is that they generate isometric
deformations including translation and rotation.

In order to capture the translation and rotation components
of the cell movements, after we compute the velocity field
u from (3), instead of using it to update r, we substitute it
by a KVF which is close to u. For any KVF v = (v1, v2),
one can show that it satisfies the following equalities:

∂v1

∂x
= 0,

∂v2

∂y
= 0,

∂v1

∂y
+
∂v2

∂x
= 0.

In general, however, there may not exist a vector field which
is close to u and satisfies all the equalities.

Instead, we look for vector fields that are “as-Killing-as-
possible” [9]. More precisely, we find a vector field ũ such
that it minimizes the following energy functional:

min
v

1

4
EK(v) + λ‖v − u‖2, (6)

where λ is a parameter that controls how much Killing is
desired. Instead of insisting on a KVF which may not exist,
this formulation find a balance between requiring the vector
field to be Killing and be close to the given velocity field u.

1The term “Killing” is named after the mathematician Wilhelm Killing.
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Fig. 2. Reconstruction results of image frames where a cell is removed from a gap of size 8 frames with the left and right images as given. (Top) original
cell images, (middle) reconstruction given by the Killing energy minimizing registration, and (bottom) reconstruction given by the particle registration.

A finite difference discretization of (6) yields the following
least squares problem:

min

∥∥∥∥[ P
λI

] [
v1

v2

]
−
[

0
u

]∥∥∥∥2

,

where u = (u1, u2), I is the identity matrix of size 2n×2n,
n is the number of grid points, and P is given by

P =

 Dx 0
0 Dy

Dy Dx

 .
Here Dx and Dy are the discrete operators corresponding to
the partial derivatives w.r.t. x and y, respectively. The least
squares problem can be solved by QR factorization.

In the end, we have obtained an as-Killing-as-possible
vector field ũ which will be used instead of u to update
the displacement r in (4).

As the registration process progresses, one of cell images
(the template) will gradually evolve into the other cell image
(the target). Due to the Killing energy model, the modified
velocity vector field is close to a KVF, which is now able to
reconstruct more natural cell movements such as translation
and rotation; see Fig. 1 (bottom).

B. Reconstruction of image frames
The final step is to match the missing image frames with

the intermediate transformed templates generated during the
particle registration process. In general, these intermediate
templates are far more abundant than the original missing
frames. Since our model is a flow model in nature, in which
the magnitude of the underlying velocity field depends on
the difference between the transformed template with the
target image during each time step. The magnitude decreases
as the transformed template becomes more resemble to the
target. Consequently, the naı̈ve approach of matching the
missing frames by a liner interpolation performs poorly in
general. Denote by Fsrc (resp.Freg) the number of missing
frames (resp. deformed templates), and by Isrc (resp. Ireg) the
index of missing frames (resp. templates). We consider two
nonlinear index matching rules:

Ireg =

⌊
Freg − 1

(Fsrc − 1)2
(Isrc − 1)2 + 1

⌋
, (7)

Ireg=

⌊
1− Freg − 2

log(2Fsrc−3)
log

(
2Fsrc−2

Isrc+Fsrc−2
−1
)⌋

, (8)

where Isrc = 1, 2, . . . , Fsrc−1. In both cases, Ireg is defined to
be Freg when Isrc=Fsrc. In practice, the quadratic matching
rule (7) generally produces better results than the logistic
rule (8) and it is the rule used in our numerical experiments.

III. NUMERICAL RESULTS

We apply the Killing energy minimizing registration al-
gorithm for cell images of live C2C12 cells obtained from
experiments performed at the Genomic Laboratory, McGill
University. They are nuclear tagged cell images. The frame
rate is 7 to 10 minutes. Due to limited space, we only demon-
strate a few examples here to illustrate how the registration
method works. All computation is performed on a PC using
MATLAB. The original image size is 512 × 512, but for
illustration purpose, only the part of the image containing
the cells of interest is shown whose size is around 100×100.

An image dataset with all the cells visible is taken as the
ground truth. We then manually remove a cell from 8 frames
to simulate the effect of a cell disappeared and reappeared
in the image sequence. Note that the number of frames is
for illustration purpose. The actual number of frames that a
cell disappears may be different. The reconstruction results
for the “missing” cell are shown in Fig. 2. In the original
image frames, the cell moves gradually from the bottom part
of the image to the middle right part with a slight change in
size and appearance. The image results given by the Killing
energy minimizing method generally agree well with the
disappeared cell. It captures the translation motion correctly
due to the effect of the Killing energy. Meanwhile, it also
captures the cell expansion by the nonrigid particle part
of the model. Furthermore, the cell appearance shows nice
resemblance of the intensity variation inside the disappeared
cell. In contrast, the particle nonrigid registration model
alone generates unnatural motion, shape, and appearance of
the disappeared cell. Fig. 3 shows another example where a
cell have a rotational movement.

We then demonstrate the effect of gap size on the re-
construction given by the Killing minimizing registration
method. In this case, we manually remove cells from 4, 8,
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Fig. 3. (Top) original images, (bottom) reconstruction results of a cell with
a rotational movement given by the Killing energy minimizing registration.

and 12 frames. The reconstruction results for the “missing”
image frames are shown in Fig. 4. The registration results
in general agree with the ground truth very well, with better
results for smaller gap sizes and tend to get worse when the
gap size increases. This illustrates a limitation of the model
when the template and target images are vastly different,
which is also common to many registration methods.

Fig. 4. (Row 1) original images. (Row 2)-(Row 4) reconstruction results
of image frames where cells are removed from a gap of size 4 frames, 8
frames, and 12 frames, given by the Killing energy minimizing registration.
Only the first 4 reconstruction images are shown.

In another experiment, we compute the error of the reg-
istration reconstruction for cells disappeared for 8 frames.
Ten datasets are tested with a total of 80 image registration
results. Error is measured as the mean squared difference
between the reconstruction images and the ground truth. The
results are given in Fig. 5. The error is around 10−3 near the
ends and increases slightly in the middle.

Finally, we show the reconstruction results for the case of
a cell division; see Fig. 6. The Killing energy minimizing
registration model is able to reproduce the splitting of the
missing cell.

IV. CONCLUSION

We have presented a novel registration model for recon-
structing incomplete cell paths for tracking cells in fluo-
rescent images when some of the cells become invisible
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Fig. 5. Error of reconstruction results given by the Killing energy
minimizing registration for 10 testing cases, each with a gap of 8 frames.

Fig. 6. (Top) Four image frames in which a cell was proceeding through
a cell division were replaced by blank image frames to simulate the
disappearance of the cell, (bottom) reconstruction of the four missing frames
given by the Killing energy minimizing registration model.

in the image sequence. By aligning the images before and
after the cell disappeared by a particle nonrigid registration
model, together with the technique of enforcing KVF into the
model, we have shown that our Killing energy minimizing
registration model is able to reconstruct missing cells with
natural movements and appearance. This is important to
reliable cell tracking. We have demonstrated the effectiveness
of the model by a number of examples from different live
cell images.
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