
Navigation System with Real-time Finite Element Analysis for

Minimally Invasive Surgery

Ken’ichi Morooka1, Yousuke Nakasuka1, Ryo Kurazume1 Xian Chen2,

Tsutomu Hasegawa1, Makoto Hashizume4

Abstract— This paper presents a navigation system for mini-
mally invasive surgery, especially laparoscopic surgery in which
operates in abdomen. Conventional navigation systems show
virtual images by superimposing models of target tissues on
real endoscopic images. Since soft tissues within the abdomen
are deformed during the surgery, the navigation system needs to
provide surgeons reliable information by deforming the models
according to their biomechanical behavior. However, conven-
tional navigation systems don’t consider the tissue deformation
during the surgery. We have been developing a new real-time
FEM-based simulation for deforming a soft tissue model by
using neural network[1]. The network is called the neuroFEM.
The incorporation of the neuroFEM into the navigation leads
to improve the accuracy of the navigation system. In this paper,
we propose a new navigation system with a framework of the
neuroFEM.

I. INTRODUCTION

A minimally invasive surgery is a surgical technique which

is smaller invasive than traditional open surgery. Such benefit

leads that recovery time and return to normal activities

is shorter for patients. Owing to this reason, minimally

invasive surgery contributes to the improvement of patients’

quality of life. On the contrary, minimally invasive surgery

requires surgeons special surgical skills compared with open

surgery. For example, surgeons need to estimate the internal

structures of the patient body through endoscopic images.

Such special surgical skills sometimes impose mental load on

the surgeons. Recently, some kinds of systems for supporting

minimally invasive surgeons have been developed. Basically,

the support system uses the volumetric models of target

tissues. Using recent advanced techniques for computational

anatomy, the models are automatically generated by preop-

erative medical images of a patient. Therefore, the support

system is one application of computational anatomy.

One support system for minimally invasive surgeons is a

navigation system [2], [3], [4], [5] for endoscopic surgery.

The navigation shows virtual images by superimposing the

models into real endoscopic images. The models contain

the internal information of the tissues such as the presence

of blood vessels and tumors which exist in the tissues.

Such information can never be obtained from the endoscopic

images. The use of the virtual images enables surgeons to
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approach the tissues or tumors safely and accurately. In this

paper, we focus on laparoscopic surgery in which operates

in abdomen.

Most of the conventional navigation systems have dealt

with bone and nerves in the ontological surgery. Since these

shapes have not changed during the surgery, the conventional

navigation systems display the model shape generated in the

preoperation phase. In laparoscopic surgery, when a contact

occurs between surgical instruments and tissues, the tissues

are deformed according to their biomechanical behavior.

Naturally, the navigation system must display realistic model

deformation to provide suitable virtual images. However, the

conventional navigation systems don’t consider the deforma-

tion.

To achieve this, the navigation system needs the function

of estimating the deformation of the target tissue. Methods

have been proposed for simulating the behavior of soft tissues

[6], [7]. Among these methods, the finite element method

(FEM) is a well-known technique for accurately modeling

the behaviors of continuous objects. On the contrary, the

FEM-based simulation of tissue deformation is very time-

consuming. In the case of soft tissues with nonlinear be-

haviors, the problem becomes more serious because the

simulation is very complex.

This paper proposes a new navigation system for la-

paroscopic surgery by using our techniques of real-time

FEM analysis. We have been developing a real-time FEM-

based simulation for deforming a soft tissue model by using

neural networks [1]. Our simulator, called the neuroFEM, can

achieve real-time nonlinear FEM simulation of deforming the

model with acceptable accuracy compared with the original

nonlinear FE analysis. Using the neuroFEM, our navigation

system can provide the suitable virtual images considering

the tissue deformation.

II. NAVIGATION SYSTEM WITH NEUROFEM

Our navigation system consists of main three components

(Fig. 1). A stereo endoscope acquires stereo images during

the surgery. Using the stereo images, 3-dimensional imaging

systems provide visual information regarding spatial depth.

This information helps surgeons to easily estimate the 3D

structure of a patient and the relative position of the anatomic

structure. The neuroFEM estimates the deformation of soft

tissue models based on the information extracted from given

stereo images. The output of the neuroFEM is a volume

model, which contains the 3D positions of nodes and their

connect. In the another workstation, a commercial software
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Fig. 1. Overview of our navigation system.

Fig. 2. Example of virtual images of our navigation system.

for medical image processing, the Virtual Place (AZE Co.),

is used to display the virtual images by fusing the deformed

model into the stereo images. We develop a new plugin in

order that the Virtual Place keeps on reading the current

model deformation. In addition, the model is converted to

a sequence of DICOM images by the method in [8]. Fig.

2 shows the example of the virtual images provided by our

system.

A. NeuroFEM

To construct the neuroFEM, a training data is a pair of

an external force and the corresponding deformation mode,

which is the model deformed by the force. An original

FE analysis is applied to calculate the deformation modes.

By changing the force parameters, many training data are

generated, and collected in a training dataset. Using the train-

ing dataset, the neuroFEM learns the relationship between

external force acting on a target tissue and the corresponding

deformation pattern of the tissue. Given an arbitrary force

as input data, the neuroFEM outputs the corresponding

deformed model.

The computational time of the nonlinear FEM analysis

increases exponentially according to the number of the nodes

included in the model. On the contrary, the runtime of

the neuroFEM depends not on the data size of the model

but on the total number of the neurons included in the

network. Also, the computations of the neuroFEM are the

linear combination of simple nonlinear functions. Owing to

the less expensive computations, the neuroFEM requires few

computation for the simulation compared with the original

nonlinear FEM analysis.

Fig. 3. Example of surface markers generated by cauterizing the tissue
surface.

Many possible deformation patterns are needed to train

the network with acceptable accuracy. Especially, several soft

tissues change gross alterations in size and shape. In the case

of such tissues, the number of their deformation patterns

increases exponentially. The use of the large dataset may

make it impossible to train one neural network. Even though

the training of the network is terminated, the accuracy of the

trained network is not enough to estimate the deformation in

the surgical simulator.

Our solution for this problem is to partition the large

dataset into some sub-datasets [9]. In our method, k-means++

[10] is employed to partition the dataset. Compared with the

original k-means, which is one of a well-known clustering

algorithm, k-means++ automatically determines the initial

centroids of the clusters based on the data distribution. Each

sub-dataset is used to train one network. As a result, our

simulator is constructed by combining the multiple trained

networks.

The dataset division allows us to decrease of the training

data used in the training of one network. Moreover, we have

proposed a method for the training data from each sub-

dataset while providing sufficient data to cover the target

problem [11]. At the same time, redundant data are removed

from the dataset based on the similarity between training

data. The selection leads to both speed up the training process

and improve the training accuracy[12].

III. EXTENSION OF NEUROFEM FOR NAVIGATION

As stated in section II-A, the external force is employed as

the input of the neuroFEM. However, in the real surgery, it

is difficult to measure the accurate parameters of the external

force caused by the forceps. Therefore, another information

is needed as the input of the neuroFEM. One component of

our navigation system is a stereo endoscope which acquires

stereo images during the surgery. Using the stereo images,

the visible tissue surface from the camera is estimated

by a conventional stereo matching method. Therefore, the

neuroFEM is extended to estimate the deformation of the

whole tissue by using the partial shape of the tissue surface.

A. Estimation of tissue deformation by using stereo endo-

scope

To recover the surface using stereo images captured si-

multaneously, the system needs to find the closest possible
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matching points between the images. One approach to the

stereo correspondence problem is to establish the correspon-

dence by matching geometric and/or appearance features

extracted from the images. However, tissues has uniform

appearance and simple shape with less geometric features.

Stereo correspondence fails in the presence of the uniform

appearance.

To solve the problem, the markers on the tissue surface

are used to predict the deformation by the neuroFEM. Fig.

3 shows the example of possible markers generated by

cauterizing the tissue surface. The markers are extracted from

the images by basis image processing techniques. The size

of each marker is about 5 [mm], and expert surgeons say

that this damage by the cauterization is not problem for

the patient. However, we will develop the markers with less

invasion. Since the correspondence between the markers in

the stereo images can be found easily and accurately, the 3D

positions of the markers can be calculated. Therefore, the

vector composed of the marker positions is used as the input

data of the neuroFEM.

Here, we must consider the following two problems for

using surface markers. When the markers are chosen from

only a specific small area, the patterns of the marker positions

are similar to each other even though the deformation modes

have different shapes. In this case, the network may be

trained incorrectly so that one input data corresponds to

several kinds of the output. Considering the variation of the

input data, the markers are selected from the whole tissue

surface.

The determination of the number of the markers is im-

portant for the estimation accuracy of the neuroFEM. While

the use of many markers may provide useful information for

the tissue surface reconstruction, the stereo correspondence

becomes complex. Therefore, the determination of the cor-

respondences between the markers is very time-consuming.

To make matter worse, the wrong correspondences may be

determined, resulting in the reconstruction of unnatural sur-

face. Therefore, a minimum number of markers is desirable

to estimate the tissue deformation in real-time. Although,

there are several reports for marker localization [13], few

researches focus on the first requirement. Therefore, we

automatically determine optimal marker locations for the

navigation using the neuroFEM.

B. Optimal marker selection for the neuroFEM

For each vertex on the surface of the tissue model, the

maximum displacement of the vertex is calculated by using

all the training data. All vertices are sorted in descending

order of their maximum displacements, and collected in a

list. Using the list, the markers is selected by the following

steps:

1) Set a parameter k to k = 1.

2) Select the first vertex in the list as the k-th marker pk,

and remove it from the list.

3) k ← k + 1
4) Set a loop parameter t to t = 1.

(a) (b)

Fig. 4. Surface markers selected by (a) our marker determination method
and (b) the random selection method.

5) If t-th vertex vt is satisfied with

‖vt − pn‖ > θ (1 ≤ n ≤ k) (1)

for all the selected markers, choose the vertex and go

to step 6, Otherwise, t← t+ 1 and go to step 5.

6) Regard the chosen vertex as the k-th marker and

removed it from the list.

7) If k is the maximum marker number K, terminate the

algorithm. Otherwise, go to step 3.

IV. EXPERIMENTAL RESULT

To verify the applicability of the proposed method, we

made some experiments for estimating tissue deformation

by using surface markers. In this experiment, a liver model

is used composed of 4,804 nodes and 15,616 tetrahedral

elements. The fixed nodes of the models are selected con-

sidering their anatomical space restrictions and the advices

of surgical experts. The model is created by the com-

mercially available softwares (CDAJ-Modeler CFD, CD-

adapco JAPAN Co., LTD.) while its deformation modes are

generated by the FEM analysis software (“Marc” produced

by MSC.Software Co.). The number of hidden layers and

number of neurons in each hidden layer are determined

thorough preliminary experimental results.

The first experiment is to evaluate the validation of the

markers selected by the proposed method described in the

section III-B. Five markers are chosen as shown in Fig. 4

(a). Therefore, the input of the neuroFEM is represented by

the 15-dimensional vector. To compare with the proposed

method, we select randomly five markers from the whole

liver surface several times. This method is called the random

method. Fig. 4 (b) shows the example of the marker selected

by the random method. Neural networks are trained by using

the markers selected by the two method. Each network

consists of four layers. There are 15 and 24 units in the

input and the output layers while each hidden layer has 120

units. 8,793 training data are used in the training process. We

evaluate the training accuracy of the obtained neuroFEM.

Here, the training error of a neuroFEM is defined by the

average vertex distance between the models estimated by the

neuroFEM and the nonlinear FEM analysis when an arbitrary

external force is given. The average training error of the

neuroFEM generated by the proposed method is 1.48×10−2

[mm]. In the case of the random method, the minimum error
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(a)

(b) (c)

Fig. 5. Experimental environment: (a) the phantom of a liver; (b)
a stereoscopic vision; (MicronTracker, Claron Technology Inc.); (c) the
experimental setup.

is 1.53×10−2 [mm]. Compared with the random method,

the proposed method can stably construct a neuroFEM with

acceptable accuracy.

In the second experiment, instead of using a real liver,

the proposed navigation system is applied to estimate the

deformation of the phantom of a liver (Kyoto Kagaku, Co.

LTD., Japan) (Fig. IV (a)). Fig. IV (c) shows the setup in the

second experiment. On the phantom surface, the five markers

are put at the locations determined by our method. In the

experiment, left lobe of the liver is lifted by the forceps. The

motion of the phantom is tracked by a stereoscopic vision

(MicronTracker, Claron Technology Inc.) (Fig. IV (b)). The

stereoscopic vision outputs the 3D positions of the markers

in real-time. When the positions is input to the neuroFEM,

the neuroFEM estimates the deformation of the phantom.

Our method is evaluated by using two another test mark-

ers. Using the test markers, we calculate the difference

between their positions estimated by the neuroFEM and

the measured positions by the stereoscopic vision. The

experiment using the phantom are repeated five times. In

the case of the test markers, the minimum and maximum

differences are 15 and 29 [mm], respectively. Such difference

is caused by the registration error between the coordinates of

the model and the stereoscopic vision before deforming the

liver phantom. Practically, the registration error using the test

markers is about 13 [mm]. This is because it is difficult to

accurately generate or put the markers at the location which

the proposed method has determined. Such misalignment

of the markers sometimes occurs in the real laparoscopic

surgery. Therefore, the process of complementing the mis-

alignment is needed to robustly estimate the deformation by

the neuroFEM.

V. CONCLUSION

We proposed a new framework of the navigation system

using the neuroFEM for laparoscopic surgery in which op-

erates in abdomen. In this paper, the neuroFEM is extended

to estimate the deformation by using several markers put

on the surface of the tissue. Moreover, the determination

of the marker locations have been developed to generate

the network with acceptable accuracy. Using the proposed

method, the neuroFEM estimates the deformation of soft

tissues in real-time while keeping the estimation accuracy

compared with the original non-linear FE analysis. On the

contrary, to construct the navigation system, we need to solve

several problems such as the misalignment of the markers.

These are our future works.
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