
  

 

 

Abstract— We have developed an automated method for 

extraction of lung tumors using a machine learning classifier 

with knowledge of radiation oncologists on data sets of 

treatment planning computed tomography (CT) and 

18F-fluorodeoxyglucose (FDG)-positron emission tomography 

(PET)/CT images. First, the PET images were registered with 

the treatment planning CT images through the diagnostic CT 

images of PET/CT. Second, six voxel-based features including 

voxel values and magnitudes of image gradient vectors were 

derived from each voxel in the planning CT and PET /CT image 

data sets. Finally, lung tumors were extracted by using a 

support vector machine (SVM), which learned 6 voxel-based 

features inside and outside each true tumor region determined 

by radiation oncologists. The results showed that the average 

DSCs for 3 and 6 features for three cases were 0.744 and 0.899, 

and thus the SVM may need 6 features to learn the 

distinguishable characteristics. The proposed method may be 

useful for assisting treatment planners in delineation of the 

tumor region. 

 

I. INTRODUCTION 

Stereotactic radiotherapy (SRT) has been developed for 
improvement of the clinical outcomes of radiotherapy in the 
treatment of stable tumors such as brain tumors by delivering 
very high doses in small irradiation fields.  In addition, the 
stereotactic body radiotherapy (SBRT) has been applied to 
moving tumors such as lung tumors while immobilizing the 
body and monitoring tumor locations.  In the SBRT technique, 
the tumor dose could be maximized while the normal tissue 
dose would be minimized.  However, it is assumed that the 
tumor and organs at risk (OAR) contours should be 
determined as accurately as possible.  The accuracy of 
contouring or segmentation of tumors affects the precision of 
radiotherapy, because the prescribed dose distribution in RTP 
is determined based on the tumor regions, which are manually 
determined on planning CT images slice-by-slice by a 
treatment planner.  However, the subjective manual 
contouring is tedious and its reproducibility would be 
relatively low, resulting in inter-observer variability and 
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intra-observer variability of tumor regions [1-5].  The tumor 
region is called the gross tumor volume (GTV), which is 
defined as the visible tumor volume in images.  A number of 
automated contouring methods for the GTVs have been 
proposed for reducing the inter-observer variability and 
intra-observer variability, planning time, and increasing the 
segmentation accuracy of the GTVs.  The conventional 
methods are based on thresholding of the standardized uptake 
value (SUV) [6,7], a region growing method [5], a Gaussian 
mixture model [8], a fuzzy c-means algorithm [9], a fuzzy 
locally adaptive Bayesian approach [10,11], a gradient-based 
segmentation method [12], a model-based method [13], and an 
atlas-based method [14].  However, there have been a few 
studies on segmentation methods for tumor regions based on 
biological information as well as physical information, such as 
18F-fluorodeoxyglucose (FDG)-positron emission 
tomography (PET) and CT images.  In this study, we tried to 
incorporate the tumor contours determined by radiation 
oncologists based on the PET biological information and CT 
morphological information into the proposed contouring 
method by using a machine learning classifier.  Therefore, the 
aim of this study was to develop an automated method for 
extracting the GTVs of lung tumors with a support vector 
machine (SVM), which learned various contours determined 
by radiation oncologists on planning CT images while taking 
into account the PET/CT images. 

 

II. METHODS AND MATERIALS 

Figure 1 shows the overall scheme for segmentation of 

lung tumors using a support vector machine.  First, PET 
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Figure 1. Overall scheme for segmentation of lung tumors 
using a support vector machine. 
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images were registered with the planning CT images through 

the diagnostic CT images of PET/CT.  Second, 6 voxel-based 

features including voxel values and magnitudes of image 

gradient vectors were calculated from each voxel in the 

planning CT and PET/CT image data sets.  Third, possible 

lung GTV voxels were classified by using a support vector 

machine (SVM), which learned the features inside and 

outside each true tumor region separately in the training step.  

Finally, the GTV region was determined by applying 

morphological closing and opening filters. 

 

A. Registration of the PET image to the planning CT image  

Prior to the registration, a diagnostic CT image of the 
PET/CT data set was registered with the PET image using an 
image position in a Digital Imaging and Communications in 
Medicine (DICOM) header information and a rigid 
registration based on normalized mutual information [15].  
Figure 2 shows an illustration for registration of a PET image 
to a planning CT image and a GTV region (radiation therapy 
structure data) in DICOM-RT (DICOM for radiation therapy). 
First, the diagnostic CT image of the PET/CT data set was 
registered with a planning CT image by using an affine 
transformation matrix.  Then, the PET image was registered 
with the planning CT image and the GTV region  by using the 
same affine transformation matrix, because the PET image 
was scanned as the same coordinate system as the diagnostic 
CT image of the PET/CT data set. 

 

B. Determination of voxel-based image features  

Six voxel-based features were derived for the SVM from 
each voxel in the planning CT and PET/CT image data sets.  
All image data, including planning CT images, GTV regions, 
and PET/CT data sets were placed in the same coordinate 
system after the registration in the previous step.  In general, 
treatment planners tend to determine GTV contours based on 
peripheral situations around tumors (e.g. pixel value and 
gradient) as well as on the tumors themselves. Therefore, each 
voxel value and its magnitude of image gradient vector were 
obtained as image features from each voxel in the planning CT 
image, diagnostic CT and PET images of a PET /CT data set.  
The image gradient was derived from the following the 
first-order polynomial within a 5x5x5 voxel region, which was 
obtained by a least-square method:  

 (     )                                                   ( )  

where x, y, and z are coordinates in a three-dimensional image, 
f(x, y, z) is the first-order polynomial, and a, b, c, and d are 
constants.  The gradient magnitude G was defined by the 
following equation: 
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C. Segmentation of the GTV region using a support vector 

machine  

SVM is one of machine learning classifiers, which is 
believed to have high generalization ability, avoidance of local 
minimum traps, and ability to overcome the curse of 
dimensionality.  In the training stage of the SVM, a 
mathematical model representing the relationship between 
input data (voxel-based image features) and teaching data (+1: 
inside GTV, -1: outside GTV) can be constructed by changing 
weighting factors in the mathematical model.  

Our basic idea of this study was to feed tumor contours 
determined based on radiation oncologists’ knowledge and 
experience into a machine learning system in a training step, 
which can classify objective voxels in a region of interest 
(ROI) into the “possible voxels” of GTV and normal tissue in 
testing step. The GTVs were extracted by using a support 
vector machine, which learned 3 or 6 voxel-based features 
inside and outside each true tumor region (ground truth).  The 
teacher signal was plus one if the voxel was inside the GTV 
region, whereas the teacher signal was minus one if the voxel 
was outside the GTV.  The outside region of the GTV was 
defined as the region dilated six times by a circle kernel with a 
radius of 1 mm.  The training voxels were selected at various 
sampling intervals depending on the ratio between the 
numbers of inside and outside voxels, so that the number of 
the inside voxels could be the same as that of outside voxels.  
We constructed an SVM classifier with a Gaussian kernel, i.e., 
    (  ‖   ‖ ) , by using the open source software 
package SVM light [16].  In this study, the value γ, the 
parameter C, and the threshold value were set as 0.0001, 12.5, 
and 0.50, respectively. Finally, the GTV region was 
determined by successively applying mathematical 
morphological closing and opening filters. 

 

D. Clinical test cases  

Data sets of planning computed tomography (CT) and 
positron emission tomography (PET) /CT images of three lung 
cancer patients, who received SBRT, were selected for this 
study.  All patients were scanned by using a 4-slice CT 
scanner (Mx 8000; Philips, Einthoven, NL) to acquire 
planning CT images with a pixel size of 0.977 mm in axial 

Figure 2.  An illustration for registration of a PET image to a 
planning CT image and a GTV region. Taffine is an affine 

transformation matrix.   
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plane and a slice thickness of 2.0 mm.  Planning CT images 
were employed for segmentation of the tumor region and 
calculation of dose distribution in patient body in the RTP 
system, whereas PET/CT image sets were obtained for 
assisting the treatment planner in delineation of the tumor 
region.  The CTVs were determined based on a consensus 
between two experienced radiation oncologists on the 
planning CT images with considering PET/CT images using a 
radiation treatment planning system (Eclipse version 6.5 and 
8.1; Varian Medical Systems Inc., Palo Alto, CA). The mean 
effective diameter of GTV was 22.4 mm with 18.9 - 25.7 mm. 
The PET/CT data sets were acquired during shallow free 
breathing on a PET/CT scanner (GE, Discovery STE) with a 
16-slice CT scanner. The PET images were obtained with 3 
min per bed position and 60 min after injection of a certain 
dose (mean dose: 222.5 MBq) of 18F-FDG.  The PET images 
were scatter and attenuation corrected, and they were 
reconstructed by use of three-dimensional ordered-subset 
expectation maximization with a post reconstruction Gaussian 
filter of 6 mm in the full width at half maximum, 28 subsets, 
and 2 iterations.  In data sets of PET/CT, the matrix size, pixel 
sizes in plane, and slice thicknesses are 512 x 512, 0.977 mm, 
and 5 mm for CT images, and 128 x 128, 5.47 mm and 3.27 
mm for PET images, respectively.  Each image data set and 
GTV data were converted into the isotropic images with a 
voxel size of 0.977 mm by using a cubic interpolation for 
planning CT and diagnostic CT images of a PET/CT scatter, 
PET images for a tri-linear interpolation method, and a 
shape-based interpolation method [17] for GTV.  

E. Evaluation of proposed method  

We performed the leave-one-out-by-patient test for the 
SVM-based segmentation method using 57 slices.  In the 
validation test, we calculated the Dice similarity coefficient 
(DSC), which indicates the degree of coincidence between 
GTV regions determined by the manual method and the 
proposed method.  The DSC S is defined as  
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where T is the “ground truth” region, manually determined by 
two radiation oncologists, C is the GTV region obtained by 
using the proposed method,  (   ) is the number of logical 
AND pixels between T and C,  ( ) is the number of voxels in 
the ground truth region and  ( ) is the number of voxels in 
the GTV region. 

 

III. RESULTS AND DISCUSSION 

The GTVs extracted by using the support vector machine, 
which learned 3 or 6 voxel-based features inside and outside 
each true tumor region, are shown in Figure 3 with the DSC 
between the gold standard and regions segmented by the 
proposed method. The three features were the voxel values of 
the planning CT image and diagnostic CT, and the SUV of 
PET images.  Estimated GTV regions are shown in green, and 
the borders of the GTV contoured by radiation oncologists are 
indicated with red lines.  In addition, overlap lines between the 
GTV outline and the estimated GTV are shown in yellow. The 
results showed that the average DSCs for 3 and 6 features 

were 0.744 and 0.899, and thus the SVM may need 6 features 
to learn the distinguishable characteristics.  In addition, it 
might be a little more difficult for the SVM to learn the mixed 
grad glass opacity (GGO) tumor compared with the solid 
tumors.   

El Naqa et al [18] developed a multimodality 
segmentation method using a multivalued level set method, 
which can provide a feasible and accurate framework for 
combining imaging data from different modalities (PET/CT), 
and is a potentially useful tool for the delineation of 
biophysical structure volumes in radiotherapy treatment 
planning.  On the other hand, in this study, we tried to 
incorporate the tumor contours determined by radiation 
oncologists based on the PET biological information and CT 
morphological information into the proposed contouring 
method by using a machine learning method.   
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