
  

  

Abstract— Computerized liver volumetry has been studied, 

because the current “gold-standard” manual volumetry is 

subjective and very time-consuming. Liver volumetry is done in 

either CT or MRI. A number of researchers have developed 

computerized liver segmentation in CT, but there are fewer 

studies on ones for MRI. Our purpose in this study was to 

develop a general framework for liver segmentation in both CT 

and MRI. Our scheme consisted of 1) an anisotropic diffusion 

filter to reduce noise while preserving liver structures, 2) a 

scale-specific gradient magnitude filter to enhance liver 

boundaries, 3) a fast-marching algorithm to roughly determine 

liver boundaries, and 4) a geodesic-active-contour model 

coupled with a level-set algorithm to refine the initial 

boundaries. Our CT database contained hepatic CT scans of 18 

liver donors obtained under a liver transplant protocol. Our 

MRI database contains 23 patients with 1.5T MRI scanners. To 

establish “gold-standard” liver volumes, radiologists manually 

traced the contour of the liver on each CT or MR slice. We 

compared our computer volumetry with “gold-standard” 

manual volumetry. Computer volumetry in CT and MRI 

reached excellent agreement with manual volumetry 

(intra-class correlation coefficient = 0.94 and 0.98, 

respectively). Average user time for computer volumetry in CT 

and MRI was 0.57 ± 0.06 and 1.0 ± 0.13 min. per case, 

respectively, whereas those for manual volumetry were 39.4 ± 

5.5 and 24.0 ± 4.4 min. per case, respectively, with statistically 

significant difference (p < .05). Our computerized liver 

segmentation framework provides an efficient and accurate 

way of measuring liver volumes in both CT and MRI. 

 

I. INTRODUCTION 

Assessment of the liver volume is crucial in liver 
transplantation because graft size is a major predictor of 
success for both donor and recipient. Thus, accurate, 
noninvasive liver volumetry is necessary [1-4] for planning 
liver transplantation. CT or MRI is used for assessing the 
liver volume. Manual tracing of the liver boundary on each 
image is the current “gold-standard” technique for liver 
volume calculation. Although manual tracing provides 
accurate results, it is very time-consuming and subjective. It 
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takes more than 30 minutes on average to determine the liver 
volume for one patient [5]. In addition, manual volumetry has 
relatively large intra- and inter-observer variations. To 
address this issue, a number of researchers have developed 
computerized liver segmentation schemes in CT [5-11]. 
However, there are fewer studies on ones for MRI [12-14]. 
We have developed a computerized scheme for liver 
volumetry for CT [15,16]. However, it was not clear that the 
same methodology was applicable to MRI liver volumetry. 
No study on the development of a computerized scheme for 
liver volumetry for both CT and MRI has been reported. Our 
purpose in this study was to develop a general framework for 
liver segmentation in both CT and MRI. 

II. LIVER SEGMENTATION FRAMEWORK 

A. Anisotropic diffusion noise reduction 

We have developed a computerized liver volumetry 
framework for both CT [15,16] and MRI [17] that is based on 
fast marching and geodesic active contour segmentation [18] 
coupled with level-set contour evolution [19], as shown in 
Fig. 1. To reduce noise without sacrificing detailed structures 
in the liver, we employed an anisotropic diffusion filter [20]. 
The anisotropic diffusion filter follows a differential equation 
called a modified curvature diffusion equation [21]: 
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where ! is the gradient operator, f is a CT or MR image, 
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is the diffusion coefficient, and K is a user-specified 
conductance parameter to control the filter’s sensitivity to 
edge contrast.  

B. Scale-specific gradient magnitude filter 

A scale-specific gradient magnitude filter was applied to 
the noise-reduced CT or MR images to enhance the liver 
boundaries for the succeeding level-set-based segmentation. 
The scale of enhancing edges is controlled by the standard 
deviation ! of a Gaussian filter applying to the noise-reduced 
image. The following differential operator was used for 
calculating the magnitude of the image gradient at each 
voxel: 
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where fG is a Gaussian filtered image. 

Computerized Segmentation of Liver in Hepatic CT and MRI by 

Means of Level-Set Geodesic Active Contouring 

Kenji Suzuki, Senior Member, IEEE, Hieu Trung Huynh, Member, IEEE, Yipeng Liu, Dominic 

Calabrese, Karen Zhou, Aytekin Oto, Masatoshi Hori 

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 2984



C. Fast-marching initial segmentation 

Segmentation of the liver from a CT or MR volume was 
accomplished by use of a two-step approach involving fast 
marching segmentation and a geodesic active contour model 
[18] with a level-set methodology [19]. The fast-marching 
algorithm [22] was used to estimate an initial rough contour 
of the liver. The fast-marching level-set algorithm [22] is a 
simplified, efficient version of general level-set algorithms. 
In the fast-marching level-set algorithm, the evolution of a 
closed contour is expressed as a function of time, t, with 
speed, F(p ), in the normal direction at a point, p, on the 
contour. The time at which the contour crosses a point, p, is 
obtained by solving the following partial differential equation, 
called the Hamilton-Jacobi equation: 

d1/J = -F(p)IV\jfl' 
dt 

(4) 

where 1/J(p, t) is a level-set function, with the initial level set 
at t=O given by 

1/J(p, t = 0) = r, (5) 

and r a closed contour (curve) in R2 space. 

D. Level-set geodesic active contouring 

Next, a geodesic-active-contour level-set segmentation 
refined the initial contour (i.e., the initial level set) 
determined by the fast-marching algorithm to approximate 
the liver boundaries more precisely. The evolution of a 
geodesic-active-contour level-set function, 1/J(p, t), is 
controlled by the following partial differential equation: 

(6) 

where A is an advection vector function, F is an expansion 
(or speed) function, and Z is a spatial modifier function for 
the mean curvature K. The user-defined scalar constants a, fJ, 
and y allow us to determine the extent to which each of the 
three functions (advection, expansion, and curvature) affect 
the change, d1/J/dt, of the contour of the level set, 1/J. 
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Figure I. Flow chart of our computerized liver segmentation framework 
for both CT and MRI. 

III. DATABASES OF LIVER CT AND MRI 

A. CTCases 

Our database for CT consisted of dynamic 
contrast-enhanced hepatic CT scans of 18 living liver donors 
at the University of Chicago Medical Center. The patients' 
mean age was 33.1 ± 10.3 years. There were 10 women 
(mean age, 33.2 ± 10.9) and 8 men (mean age, 33.0 ± 10.2). 
Scans were obtained under a liver transplant protocol with a 
multi-detector CT system with a 16-, 40-, or 64-channel 
detector scanner (Brilliance, Philips Medical Systems, 
Amsterdam, Netherlands). Nonionic contrast medium 
(iohexol, Omnipaque 350; Nycomed Amersham, Princeton, 
NJ) of 120-150 cc (mean, 125 ± 8) was administered to the 
patients intravenously for acquisition of arterial- and 
portal-venous-phase CT images. The CT scanning parameters 
included collimation of3 (n=ll), 4 (n=4), or 5 mm (n=3) and 
reconstruction intervals of 2.5 (n=2), 3.0 (n=13), or 4.0 mm 
(n=3). Each reconstructed CT slice had a matrix size of 512 x 
512 pixels, with an in-plane pixel size of 0.53-0.85 mm 
(mean: 0.68 ± 0.08). 

B. MR/Cases 

Twenty-three patients (14 male and 9 female patients; 
ages ranged from 46 to 84 years) were scanned in the supine 
position with 1.5T MRI scanners (Signa HDx/HDxt, GE 
Medical Systems, Milwaukee, WI; and Achieva, Philips 
Medical Systems, Cleveland, OH) at the University of 
Chicago Medical Center. Intravenous gadolinium contrast 
agent (8-20 mL; mean: 15.3±4.2 mL) was administrated. 
Post-contrast MR images were obtained by use of 
TI-weighted liver acquisition with volume acceleration 
(LAV A) or Tl-weighted high-resolution isotropic volume 
examination (THRIVE) sequence. The scanning parameters 
included collimation of 5 mm (for the GE system) or 4 mm 
(for the Philips system) and reconstruction intervals of 2.5 
mm (for the GE system) or 2 mm (for the Philips system). 
Each MR slice had a matrix size of 256x256, 384x384, or 
512x512 pixels with an in-plane pixel size ranging from 1.17 
to 1.72 mm. The 23 cases in our database had liver diseases 
(hepatocellular carcinoma in 11 cases and metastasis in 12 
cases). 

C. "Gold-standard" manual segmentation 

The manual liver contours in CT and MR images were 
traced carefully by board-certified abdominal radiologists on 
each slice containing the liver. The number of slices in each 
CT case and MR case ranged from 52 to 77 (average: 62.3) 
and from 88 to 120 (average: 97.9), respectively. The time 
required to complete the manual tracing was recorded. To 
calculate the entire liver volume for each case, we summed 
the volumes obtained by multiplying the areas of the 
manually traced regions in each slice by the reconstruction 
interval. Liver volumes obtained by use of our computerized 
liver segmentation framework were compared with manual 
liver volumes, used as the "current gold standard." 
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(a) (b) 

(c) (d) 

Figure 2. Illustration of the resulting images at each step in our 
framework. (a) Original CT image. (b) Anisotropic diffusion noise 

reduction. ( c) Scale-specific gradient magnitude filter. ( d) Geodesic active 
contour segmentation. 

IV. RESULTS 

Figure 2 illustrates the intermediate images taken from 
each step of our framework for an example case. The noise in 
the original CT image in Fig. 2(a) was reduced by the 
anisotropic diffusion filter, while maintaining the liver 
structures such as the portal vein and the liver border, as 
shown in Fig. 2(b ). A scale-specific gradient magnitude filter 
was applied to the noise-reduced image to enhance the liver 
boundary, as shown in Fig. 2(c). Finally, the liver was 
segmented by use of the fast-marching segmentation 
followed by the geodesic active contour level-set 
segmentation, as shown in Fig. 2( d). After the segmentation, 
the median filter was applied for removal of impulse noise in 
the extracted liver. Liver volumes were calculated using the 
segmented liver regions. The same liver segmentation 
framework was applied to MR cases where parameters of our 
framework had been modified to accommodate general MR 
images. In other words, a different single set of parameters 
was determined specific to MRI. 

The mean liver volume obtained by use of our framework 
for CT cases was 1,504 cc, with a standard deviation of 407 
cc (range: 956-2,381 cc), whereas the mean "gold-standard" 
manual volume was 1,457 cc with a standard deviation of 
357 cc (range: 984-2,439 cc), with a mean absolute 
difference of 105 cc (7.2%). On the other hand, the mean 
gold-standard manual volume for MR cases was 1,710 cc 
with a standard deviation of 401 cc (range: 1,013-2,529 cc), 
while the mean volume of our computerized framework was 
1,697 cc with a standard deviation of 400 cc (range: 1,120 -
2,418 cc). 

The relationship between the computer-estimated 
volumes and the "gold-standard" manual volumes is shown 
in Fig. 3. The two volumetrics for CT and MRI reached 
excellent agreement (the intra-class correlation coefficient 
was 0.94 and 0.98, respectively). Pearson's product moment 
correlation coefficient for CT and MRI were 0.94 and 0.98, 

respectively, at a non-statistically-significant level (p=l 1.5 
and 23.65). For CT cases, the mean absolute difference and 
the percentage volume error (E) were 104 cc and 7.0%, 
respectively. On the other hand, the mean absolute difference 
and the percentage volume error for MR cases were 56 cc 
and 3.6%, respectively. The overall mean of the Dice 
coefficients was calculated as 93.6±1.7%, and the accuracy 
ofliver segmentation was 99.4±1.4%. 
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Figure 3. Relationship between computer-estimated volumes and 
"gold-standard" manual volumes. (a) CT cases. (b) MRI cases. The 

computer and manual volumetrics for CT and MRI reached an excellent 
agreement (the intra-class correlation coefficient was 0.94 and 0.98, 

respectively). 

Figure 4 illustrates computerized liver segmentation and 
"gold-standard" manual segmentation for a CT case. The 
computerized liver segmentation agrees almost perfectly with 
the "gold-standard" manual liver segmentation for a slice 
through the superior portion of the liver. Figure 5 illustrates 
computerized liver segmentation and "gold-standard" manual 
segmentation for a MR case. The computerized liver 
segmentation agrees almost perfectly with the 
"gold-standard" manual segmentation. 

The average processing time by our automated 
framework for CT cases was 3.6 ± 1.5 minutes per case 
(range: 1.7-7.0) on a computer (Intel, Xeon, 2.66 GHz). 
Because the time that a radiologist spent in automated 
volumetry was only the time for providing several initial 
points within the liver, we considered it as user time. The 
average user time for the computer volumetry was 0.57 ± 
0.06 minutes per case. The difference was statistically 
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significant (p < .025). On the other hand, the average 
processing time by our framework for MR cases was 1.03 ± 
0.13 minutes per case (range: 0.9-1.5 min/case), whereas that 
for the manual method was 24.0±4.4 minutes per case (range: 
18-30 min/case). The difference was statistically significant 
(p<0.001). 

Figure 4. Illustrations of computerized liver segmentation and 
"gold-standard" manual liver segmentation for CT. (a) Original CT image. 

(b) Computerized liver segmentation (thick solid contour) and 
"gold-standard" manual segmentaton (thin dashed contour). 

Figure 5. Illustrations of computerized liver segmentation and 
"gold-standard" manual segmentation for MRI. (a) Original MR image. (b) 
Computerized liver segmentation (red contour) and "gold-standard" manual 

segmentation (blue contour). 

V. CONCLUSION 

We developed a computerized framework for segmenting 
the liver in CT and MRI by using a fast marching and 
geodesic active contour segmentation coupled with level-set 
algorithms. Liver volumetrics determined by our 
computerized framework agreed excellently with 
"gold-standard" manual volumetrics in both CT and MRI. 
Our computerized framework required substantially less 
completion time, compared with manual segmentation. Our 
framework provides an efficient and accurate way of 
measuring liver volumes in CT and MRI; thus, it would be 
useful for radiologists in their measurement of liver volumes. 
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