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Abstract— Recently, some methods have been proposed for
filtering multi-coil MRI acquisitions with correlation between
coils. Those methods are based on statistical models of noise
to develop a Linear Minimum Mean Square Error (LMMSE)
filter. The advantage of LMMSE-based filters stems from
their simplicity and robustness. However, they exhibit some
drawbacks: their performance strongly depends on the under-
lying statistical model and on the way the local moments are
estimated. The first problem can be avoided when considering
effective values provided by recent studies on the models of
noise in multi-coil systems with correlation between coils. How-
ever, the local moments are estimated in square neighborhoods
which can include different kinds of tissues. Thus, the local
variance is biased towards upper values, which results in an
inaccurate estimate in regions close to tissue boundaries. In this
work we propose to overcome this problem by introducing an
anisotropic diffusion step in the LMMSE estimate for correlated
multi-coil systems which improves the estimation of the signal in
regions where other LMMSE methods fail. Results demonstrate
the better behavior in different noisy scenarios.

Index Terms— MRI, LMMSE, multi-coil, estimate, filtering.

I. INTRODUCTION

Statistical models of noise in magnetic resonance (MR)

depend on the scanner coil architecture. In the simplest

case (a single-coil acquisition) the complex spatial MR data

is typically assumed to be a complex Gaussian process,

where real and imaginary parts of the original signal are

corrupted with uncorrelated Gaussian noise with zero mean

and equal variance. Thus, the magnitude signal calculated as

the envelope of the complex signal is Rician distributed [1].

However, this simple case does not hold in modern ar-

chitectures that include new acquisition technologies aiming

to speed-up the acquisition of MRI. These methods are

commonly referred to as Parallel Magnetic Resonance Imag-

ing (pMRI), and are based on the simultaneous acquisition

of different parts of the subsampled k-space by different

receiving coils. As a consequence, in these more complex

architectures, the Rician model is not valid any more.

Finding a proper statistical noise model in pMRI becomes

important for anatomical evaluation and as a previous step for

segmentation, registration or tensor estimation in diffusion

tensor MRI (DT-MRI) [2]. When multiple-coil MR acquisi-

tion systems are considered, the noise in each receiving coil

in the k-space is modeled as a complex stationary additive

Gaussian noise process, with zero mean and equal variance
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[3]. Under the assumptions of noise components identically

and independently distributed with no acceleration (the k-

space is fully sampled); the composite magnitude signal

(CMS) calculated as the sum of squares (SoS) of the received

signal in each coil follows a non-central χ (nc-χ) distribution

[4]. The noise variance is the same for all image points in

both the k-space and x-space domains, i.e., the noise in the

image may be considered spatial-stationary.

This statistical behavior does not hold when the coils in

the scanner show a different variance of noise or under the

presence of correlation between coils. In practical cases,

correlation between coils exists, and therefore, the standard

nc-χ model is not valid. In [5], the authors showed that if

multiple coils and correlated noise are considered, the data do

not strictly follow a nc-χ . However, for practical purposes, it

can be modeled as such, but taking into account two effects:

1) Effective parameters must be considered. Thus, due to

the correlation, the distribution is very similar to a nc-χ but

considering a smaller number of coils and a greater variance

of noise. 2) The effective parameters will also depend on

the signal and hence on the position within the image. As a

result, there will be different variance of noise in different

areas of the image and the pattern of noise will be spatially

variant, and the noise becomes non-stationary.

Due to these effects, an improper estimate of the effective

parameters and a wrong supposition on the statistical model

may cause an inaccurate estimate of the actual signal. Thus,

in [6], a methodology to estimate the effective parameters

in the presence of correlation between coils was proposed

as well as the extension of the LMMSE filter to the case of

correlated systems.

The main advantage of the LMMSE filters stems from

their simplicity and robustness. However, their performance

strongly depends on the underlying statistical model. An

additional problem lies in the way the local moments are

estimated. In those voxels corresponding to image edges,

the square neighborhood comprises different kinds of tissues.

Thus, the local variance increases and the LMMSE provides

inaccurate estimates which results in a poor estimate of the

actual value.

In this work, we propose to overcome this limitation by

introducing an anisotropic diffusion step in the LMMSE

estimate for correlated pMRI which improves the estimation

of the signal in the regions where the LMMSE method

proposed in [6] and conventional LMMSE methods fail.

Results obtained from multiple-coil data evidence the better

performance of the proposed filter with respect to other state-
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of-the-art methods for all the noisy scenarios considered.

II. BACKGROUND

A. Noise Model

Noise in multiple coil systems, if the k-space is fully

sampled and SoS is used to recover the CMS, is assumed to

follow a nc-χ model [4], [7], [8] with parameters L (number

of coils) and σ2
n (variance of noise in each coil) and with

probability density function (PDF):

pML
(ML|AL,σn,L) =

A1−L
L

σ2
n

ML
L e
−
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L
+A2

L

2σ2
n IL−1

(
ALML
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n

)
, (1)

with ML(x)> 0, A2
L(x) = ∑

L
l=1 |Al(x)|

2 and Al(x) the original

complex signal in each coil, IL(·) the L-th order modified

Bessel function of the first kind. In the background, this PDF

simplifies to a central χ (c-χ).

When the variance of noise varies from coil to coil or there

is some correlation between coils, the statistical distribution

of data is affected. This deviation from the ideal case usually

happens in multi-coil systems [9].

The general case can be formulated considering a covari-

ance matrix, Σ, where the correlation terms are considered

in the off-diagonal elements. For this case, the distribution

does not follow a nc-χ . However, the nc-χ becomes a

good approximation of the actual distribution when effective

parameters of L and σn are considered [5]:

Leff(x) =
A2

T (x)+(tr(Σ))2

A∗(x)ΣA(x)+ ||Σ||2F
(2)

σ2
eff(x) =

tr(Σ)

Leff(x)
(3)

where || · ||F is the Frobenius norm and A(x) =
[A1(x) · · ·AL(x)]

T .

From this equations, one should notice that the effective

variance of noise increases due to the correlations between

coils, whereas the effective number of coils is reduced. Ad-

ditionally, both effective values will depend on the position,

x, so the distribution is non-stationary. However, the product,

Leff(x)σ
2
eff(x) = tr(Σ) = ∑

L
l=1 σ2

l = Lσ2
n , does not depend on

the position.

B. Noise Filtering

In this section we present the filtering schemes that make

use of the underlying statistical models of noise. The main

advantage of using these methods is that they are based

on an estimation philosophy. The simplest case is the so-

called conventional approach (CA) which is an averaging

of the squared signal with bias removal, assuming a Rician

distribution of the data. Thus, the filtered signal is an estimate

of the actual signal without any source of noise and, when

there is no information to obtain a proper estimate of the

signal, the noisy data is preserved. In the case of the nc-χ ,

the estimate is:

Â(x) =
√

max(〈M2
L(x)〉x−2σ2

n L,0). (4)

Note that the sample estimation, 〈·〉x, is used to estimate the

second order moment:

〈M2
L(x)〉x =

1

|η(x)| ∑
y∈η(x)

M2
L(x), (5)

with η(x) a neighborhood centered in x, and |η(x)| its

cardinal.

Note also that this is a zero order estimate of the signal.

Instead of this approach, a linear model can be adopted which

takes into account not only the first moment of M2
L but also

the second order moment in the local neighborhood. The

linear model give rise to the LMMSE estimate. The LMMSE

with Rician model is the simplest case when L = 1 and no

correlation is considered. The importance of the formulation

presented in Eqs. (2) and (3) is that the formulation of the

filters do not need to be recalculated, since the effective

values implicitly decorrelate the noise between coils and

the nc-χ model can be used directly. The Rician LMMSE

model was proposed in [2], whereas the nc-χ extension was

presented in [10], [6]:

Â2(x) = 〈M2
L(x)〉x−2Lσ2

n +KL(x)(M
2
L(x)−〈M

2
L(x)〉x), (6)

where KL(x) is defined as:

KL(x) = 1−
4σ2

n (〈M
2
L(x)〉x−Lσ2

n )

〈M4
L(x)〉x−〈M

2
L(x)〉

2
x

. (7)

Note that, when there is some correlation between coils,

the effective values shown in Eqs. (2) and (3) must be used

instead of L and σn [6].

III. ANISOTROPIC DIFFUSION LMMSE FOR

CORRELATED DATA

One of the problems of the LMMSE philosophy is that

it is based on the computation of the mean and variance of

the data being filtered according to an assumed noise model,

which is usually accomplished by calculating local moments

over square neighborhoods. In pixels corresponding to image

contours, the local moments estimate results in an inaccurate

calculation of the KL(x) term of Eq. (7), which bias the

value towards 1, due to an increase of the local variance

〈M4
L(x)〉x−〈M

2
L(x)〉

2
x. The effect is that image is not filtered.

This is a desired property of the LMMSE philosophy, since

it is preferable to preserve the noisy value rather than assume

a poor estimate.

However, a proper estimate can be consider if the neigh-

borhood is established in the tangent direction of the border

instead of square neighborhoods. This way, the local mo-

ments can be calculated along the borders. For this purpose,

we adopt the anisotropic scheme proposed in [11] for the

Rician case and we adopt it for the correlated nc-χ . This way,

the correlation of multiple coil acquisitions is considered and

the behavior of the correlated nc-χ LMMSE is improved in

the tissue contours.

We propose to adapt the correlated nc-χ LMMSE into a

Partial Differential Equation scheme that models a diffusion
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process governed by the following equation:




u(x,0) = 〈M2
L(x)〉x +KL(x)(M

2
L(x)−〈M

2
L(x)〉x)

∂u(x, t)

∂ t
= div(D∇u(x, t))

(8)

where D is the diffusion tensor depending on the local

statistics of the image and on the noise model. The matrix

D can be expressed in a diagonal form with the eigenvectors

vi, where i varies from 1 to the number of the dimensions

of the image. In the 2D case it is defined as:

D = E

(
λ1 0

0 λ2

)
ET

, with

{
λ1 = KL

λ2 = 0
(9)

with E = (vt
1,v

t
2). We choose the eigenbase obtained from

the structure tensor calculated from u(x,0) as follows:

T = Gσ ∗ (∇σ u(x,0) ·∇σ u(x,0)t) (10)

where Gσ is a Gaussian kernel with standard deviation

σ , and ∇σ u(x,0) is the gradient of the LMMSE estimate

without bias correction filtered by a Gaussian kernel with

standard deviation σ . The eigenbase E is obtained from the

diagonalization of T .

The statistical information is included in the diffusion

equation scheme by assigning KL(x) obtained from the

nc-χ LMMSE as the eigenvalue associated to the eigenvector

tangential to the contour. This definition takes the advantage

of the coefficient KL when it is close to 1, which means that

there are more than one type of tissue in the neighborhood.

In this case, filtering is performed along the detected contour.

Note that this formulation complements the correlated

nc-χ LMMSE method, which makes use of isotropic neigh-

borhoods, by adding an anisotropic diffusion in along the

contours detected within the neighborhood of each voxel.

Hence, the initial estimate is, at least, as good as the

isotropic nc-χ LMMSE method and refines the estimate

in the tissue contours in just a few iterations (we con-

sidered tend = 5 iterations with a time step of 0.1). Af-

ter the diffusion process, the bias is corrected as Â(x) =√
max(u(x, tend)−2Leff(x)σ

2
eff(x),0). The 3D extension of

this filter can be obtained easily considering a planar neigh-

borhood obtained from the plane tangent to the contour

of the image. A semi-implicit scheme was adopted for the

numerical implementation of the diffusion equation.

IV. RESULTS

To test the performance of the filters we considered a

synthetic experiment. A phantom was built using different

levels of noise for a noticeable level of correlation between

coils (ρ = 0.1). The phantom is a two-dimensional syn-

thetic slice (see Fig. 1) from a BrainWeb MR volume [12]

with intensity values in [0− 255]. An eight-coil system is

simulated using an artificial sensitivity map coded for each

coil so that A2
L(x) = ∑l |Al(x)|

2. The signal in each coil is

corrupted with complex Gaussian noise with σn (in both the

real and imaginary parts) ranging from 1 to 20. The CMS

(a) Synthetic Image (b) Noisy Image

Fig. 1. Phantom obtained from a BrainWeb MR volume [12] and the
simulated noisy image for an eight-coil system corrupted with σn = 10 in
both the real and imaginary parts and correlation between coils ρ = 0.1.

is reconstructed from the data in each coil using SoS. One

hundred realizations were generated for each σn.

The estimates of Leff and σeff were obtained following the

method proposed in [6]. All the isotropic local moments were

calculated using 7×7 neighborhoods. Five filters were tested

with the proposed phantom. 1) The conventional approach

(CA) for the nc-χ statistical model described by Eq. (4).

2) The Rice LMMSE, where no correlations and L = 1 are

assumed (Rice-LMMSE). 3) The nc-χ LMMSE without the

assumption of correlation (nc-χ-LMMSE). 4) The correlated

nc-χ LMMSE with the estimation assuming correlations be-

tween coils (c-nc-χ-LMMSE). 5) The proposed anisotropic

version of the c-nc-χ-LMMSE method.

A visual comparison is depicted in Fig. 2 for σn =
10 and coils correlation ρ = 0.1. The performance of

the c-nc-χ-LMMSE method results in a better estimate

of the values in homogeneous regions compared to the

nc-χ-LMMSE filter. This behavior owes the correction of

the effective values. However, there still are some unfiltered

regions in the boundaries of tissues because of the inaccurate

calculation of the coefficient KL. This effect is avoided with

the proposed filter (Fig. 2.(e)) where the anisotropic filtering

performed along the contour of tissues results in a better

definition of edges. Both the CA and the Rice-LMMSE

methods underestimate the value of KL (in the case of the

conventional approach is equal to zero) which provides an

over-smoothed image due to a wrong statistical assumption

(Rice instead of nc-χ) or an oversimplified estimate (zero

order estimate in the case of CA).

The numerical comparison between methods was per-

formed by using two quality indexes: the Structural Similar-

ity (SSIM) index [13] and the Mean Squared Error (MSE).

The SSIM provides a measure of the structural similarity

between the ground truth and the estimated images. The

closer to 1, the better the quality is. These quality measures

were applied to those areas of the original image with

intensities greater than zero in order to avoid any bias due to

non relevant parts of the image. The results for an increasing

σn are shown in Fig. 3. Note that the proposed method

obtains the best performance compared to the rest of the

LMMSE-based methods. This result is due to the better
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a) Conventional Approach (b) Rice-LMMSE (c) nc-χ-LMMSE (d) c-nc-χ-LMMSE (e) Proposed

Fig. 2. Filtered images from a phantom simulated in an eight-coil system for σn = 10 and correlation between coils ρ = 0.1.
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Fig. 3. Quality measures for the LMMSE-based schemes for an increasing
σn. These values were obtained as the mean value of 100 independent
experiments of an eight-coil system and correlation between coils ρ = 0.1.

estimate obtained in the neighbors of the image contours,

where different tissues cause an inaccurate estimate of KL.

V. CONCLUSIONS

In this work we presented a methodology to avoid inaccu-

rate estimates of the signal in neighborhoods close to tissue

boundaries. This problem usually appears as noisy regions

when applying LMMSE-based filters, which is due to an

overestimation of the local variance. We propose to include

an anisotropic diffusion step which acts in regions where the

local variance is overestimated. Thus, the diffusion process

performs an estimate in a tangential direction to the contours

or tissues while the contours are preserved.

The proposed method takes advantage of the isotropic

LMMSE for correlated multi-coil systems and performs

anisotropic filtering in regions where the LMMSE cannot

provide a suitable estimate of the variance due to the

presence of multiple tissues in the neighborhood. Thus, the

implementation of the proposed method provides an estimate

of the signal at least as good as that one obtained with

the isotropic LMMSE with the advantage of providing well

defined contours of tissues in those regions where isotropic

LMMSE methods fail. Results obtained with an increasing

σn of noise and a noticeable correlation ρ = 0.1 exhibit the

desired behavior of the proposed filter, which obtains better

results for both the MSE and MSSIM in all noisy scenarios.
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