
Functional Dependence in the Human Brain: A Graph Theoretical

Analysis:

Bilal H. Fadlallah1, Andreas Keil2 and José C. Prı́ncipe1

Abstract— In this paper, we propose a graph-theoretical
approach to reveal patterns of functional dependencies between
different scalp regions. We start by computing pairwise mea-
sures of dependence from dense-array scalp electroencephalo-
graphic (EEG) recordings. The obtained dependence matrices
are then averaged over trials and further statistically processed
to provide more reliability. Graph structure information is
subsequently extracted using several graph theoretical mea-
sures. Simple measures of node degree and clustering strength
are shown to be useful to describe the global properties of
the analyzed networks. More sophisticated measures, such as
betweenness centrality and subgraph centrality tend to provide
additional insight into the network structure, and therefore ro-
bustly discriminate two cognitive states. We further examine the
connected components of the graph to identify the dependent
functional regions. The approach supports dynamicity in that
all suggested computations can be easily extended to different
points in time, thus enabling to monitor dependence evolution
and variability with time.

I. INTRODUCTION

It has long been known that the human brain represents

an immensely complicated network. Hence, it is only

natural to consider applying network and graph analysis

methodologies as means to bring better understanding of

its underlying mechanisms. A good recent review outlining

research efforts done on structural and functional brain

networks can be found in [1].

In this paper, we show how graph theoretical concepts can

be useful in assessing functional brain connectivity within a

context using measures of statistical dependence. Measures

of dependence have been suggested in the literature to

quantify dependencies in neural data. Examples include

correlation [2], [3], mutual information [4], [5] and

Granger causality [6], [7]. Recently in our lab, we have

explored the generalized measure of association or GMA as

a measure that quantifies dependence between realizations

of random variables. The concept was further developed to

handle temporal dependence using an approach we termed

the “time series generalized measure of association” or

TGMA [8]. TGMA was applied on EEG time series to

extract relational information between different recordings
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[9], [10]. In these studies, dependence was computed

with respect to a reference channel. This assumption is

relaxed in this paper, where all pairwise links are considered.

The rest of the paper is organized as follows. In Section

II, we briefly outline the experimental methodology and the

procedure followed to generate the dependence graph from

processed EEG data, and in Section III, we detail different

graph theoretical measures that can be used to characterize

the structure of the obtained graphs. The experimental results

are presented in Section IV and Section V offers discussion

and concluding remarks.

II. EXPERIMENTAL PROCEDURE

A. Setting

The experimental setting is similar to the one described in

[10] and included one participant, a male graduate student

in his early twenties. Neuroelectric activity was recorded

from 129 channel locations of a Hydro-Cell Geodesic Sensor

Net (HCGSN) data acquisition system [11]. Each recording

consisted of 4.2 seconds after stimulus onset, with a sampling

rate Fs “ 1000 Hz, and 15 trials were performed in

which two different types of pictures were presented to the

participant. The first shows a neutral human face (F) and the

second a Gabor patch (G) with matched luminance, contrast

and mean spatial frequency. The subject was explicitly asked

not to blink during the recordings. Offline, the effect of

volume conduction was minimized using surface Laplacian

methods. Fig. 1 schematically illustrates the experimental

design.

Gabor patch 

Facial stimulus 

Flicker rate = 17.50 Hz 

HC-GSN  (EGI) Sensor map 

Fig. 1: Experimental setting using a HydroCell Geodesics

Sensor Networks system from Electrical Geodesics, Inc.

(Riverfront Research Park, 1600 Millrace Drive, Suite 307,

Eugene, OR 97403, USA).
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B. The Dependence Graph

Instrumentation noise is first removed by placing notch

filters at the locations of the spikes in the recorded signal

spectrum. Using adequate bandpass filtering, we concentrate

on the relatively narrow band centered around 17.5 Hz

as per the thorough analysis in [9]. Prior to computing

TGMA values, we embed each processed time series in

τ “ 8 dimensions to account for the propagation delay

among neighboring channels. A dependence graph can be

then constructed using the computed dependence values.

The motivation behind using such dependence graphs is

their proven usefulness in describing dependence relations

between random variables [12], and neural sources [13]. We

model the electrodes network as a complete undirected graph

G “ pV, Eq, where V is the set of vertices or nodes and E

is the set of edges. We assume that the graph is undirected

since our goal is to quantify dependencies between brain

regions, which does not account for direction. For each edge

eij between two vertices i and j, we assign a value mij

representing the dependence between the processed signals

recorded at the electrodes locations. Note that for correlation,

mij exists in the interval r´1, 1s, whereas for TGMA it

lies in the interval r0.5, 1s. As a result, and after averaging

over trials, a 129ˆ 129ˆ 38 matrix of pairwise dependence

values M
c
d is generated for each dependence measure d

and condition c, where 38 refers to the number of frames

or time windows (Note that 38 windows correspond to

38 ˆ 114 “ 4332 samples, which exceeds the initial 4200

samples due to the convolution with the bandpass filter term).

The graph G is further transformed into an incomplete graph

by discarding values falling below a predefined statistical

threshold (more details in Section IV), which results in a

thresholded adjacency matrix t
M

c
d.

III. GRAPH THEORETICAL CONCEPTS

A. Basic Notations

The neighborhood of a vertex v P V is the set Nv of all

vertices (or neighbors) connected to v, i.e Nv “ tr : erv P
E or mrv ‰ 0u. The degree of v consists of the number

of vertices that are incident to v, i.e. nv “ |Nv |, where |.|
denotes the cardinality of a set. A path from vertex r to

vertex s is a sequence of vertices and edges that begins with

r and ends with s, with an edge connecting each vertex with

the succeeding one. The distance dr,s between r and s is the

minimum length of any path connecting the two vertices. We

hereby present some graph theoretical measures of interest

for our analysis.

B. Node Clustering Coefficient

The clustering coefficient is a frequently used measure

to characterize the local and global structure of unweighted

graphs [14]. The clustering coefficient measures the extent to

which nodes in a graph tend to cluster together. It is defined

for a node i in the graph as:

CCi “
|tejk : vj , vk P Ni, ejk P Eu|

nipni ´ 1q
(1)

In Eq. 1, ni “ |Ni |. The clustering coefficient of a vertex

can be interpreted in terms of its tendency to promote

connections among its neighborhood, and can therefore be

considered as an indicator of information flow in dynamic

networks [19]. It assumes values between 0 and 1.

C. Measures of Centrality

A vertex’s importance in a graph can be quantified using

several measures, including measures of centrality.

Betweenness Centrality: The betweenness centrality of a

vertex i measures the number of shortest paths traversing

that vertex. It was first proposed by Anthonisse [15] and has

been later used in several contexts [16], [18], [17]. It can be

defined as:

Bi “
ÿ

j‰i‰k

No. shortest paths from j to k via i

No. shortest paths from j to k
(2)

When the betweenness centrality of a vertex is high, the

vertex is more likely to be an intermediate communication

node in the graph. Such vertices can be seen as occupying

the “structural holes” in the network [19], [20].

Subgraph Centrality: The subgraph centrality of a vertex i

can be defined as the weighted sum of closed walks having

different lengths, starting and ending at i.

Si “
8
ÿ

k“0

µki
k!

(3)

where in Eq. 3, µki refers to the kth local spectral moment,

which defines the number of closed walks of length k,

starting and ending on i. µki is computed using the ith

diagonal entry of the kth power of the graph adjacency

matrix.
µki “

`

t
M

c
d

˘k

ii
(4)

Due of space limitations, the computational details pertaining

to subgraph centrality are omitted and can be found in [21].

Closeness Centrality: The closeness centrality of a vertex i

is defined as the inverse of the sum of distances between i

and all other vertices.

Ci “
1

ř

jPV
di,j

(5)

D. Local Efficiency

The local efficiency of a vertex i can be defined in terms

of the sum of inverse distances between the vertices in

Ni. The local efficiency mainly measures the efficiency in

communication between the direct neighbors of i, when the

node itself is removed.

Eloc
i “

1

nipni ´ 1q

ÿ

j,kPNi

1

dj,k
(6)
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E. Connected Components 

A connected component of an undirected graph is a 
maximal subgraph in which any two vertices are connected 
to each other by paths. The concept is graphically illustrated 
in Fig. 2. 

Fig. 2: An undirected graph con
sisting of three connected compo
nents. 

IV. RESULTS 

For each measure of dependence, we define Md as the 
difference between matrices pertaining to each condition, 
i.e. Md = Mr - M~. It is then possible to visualize 
how the differences in pairwise dependence values vary 
in sensor space across time. The resulting matrices are 
first processed for statistical significance by discarding all 
values falling within 2 standard deviations of their means, 
i.e. an edge is drawn between a given pair of vertices if 
the computed dependence between the two is significantly 
different than the mean dependence, at a confidence level 
of 2 standard deviations. Two representative measures of 
dependence are used in our simulations: the first is the 
time series generalized measure of association (TGMA) 
[8], and the second is Spearman's rho, a nonparametric 
measure of correlation. For each measure of dependence, we 
compute five node quantities, namely the degree, clustering 
coefficient, betweenness centrality, subgraph centrality and 
local efficiency. The absolute value of Spearman's rho is 
considered since anticorrelation also implies dependence. 
Computations are made per windows of time corresponding 
to 114 ms, to achieve a better time resolution and allow 
tracking any time-varying activity. Alternatively, the whole 
time series can be used to obtain mean assessment values. 
The obtained values are visualized in sensor space to identify 
the active regions involved. Fig. 3 shows the resulting plots 
(averaged over the time windows) for TGMA and Fig. 4 
those for Spearman's rho. 

In Fig. 5, we show how betweenness centrality changes 
with time. Each of the displayed subplots corresponds to 
computations extracted from 8 subsequent windows or ap
proximately 1 second of data. We can observe a consistency 
in the active regions across time, especially towards the 
later time windows, which suggests the reinforcement of 
communication between sources as time passes. 

Fig. 6 shows the connected components corresponding to 
each condition. The size of the corresponding connected 
component was plotted for each channel. The size of the 
main connected component for the "Face" condition is 
substantially higher than that of the "Gabor patch" condition. 
Fig. 7 maps the different in active regions to the sensor space. 

(a) (b) (c) 

(d) (e) 

Fig. 3: Several graph theoretical measures extracted from 
two dependence graphs constructed using TGMA. First, we 
compute the difference between the two weighted adjacency 
matrices corresponding to the face and Gabor patch condi
tions (averaged over trials), and discard non-significant val
ues. We then use graph theoretical measures to characterize 
the importance of each node. The measures were visualized 
in a heat map format where red denotes regions of more 
pronounced differences, and include from left to right: (a) the 
node degree, (b) the node clustering coefficient, ( c) the node 
betweenness centrality, (d) the node subgraph centrality, and 
( e) the node local efficiency. Computations used windows of 
114 samples and plots were averaged over 38 windows. 

(a) (b) (c) 

(d) (e) 

Fig. 4: Several graph theoretical measures extracted from 
two dependence graphs constructed using Spearman's rho, 
and displayed in heat map format. The same steps and graph 
theoretical measures described in Fig. 3 are used. 
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Fig. 5: Betweenness centrality for a graph constructed using

TGMA. The subplots are sequential from left to right and

each subplot represents approximately 1 sec of data or 8

windows of time. This corresponds to 32 time windows out

of the 38 (alternatively the first 3.6 sec out of the 4.2 sec).
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Fig. 6: The size of the connected components per channel

for the face and Gabor patch conditions. The dependence

measure used is TGMA, and the dependence matrices were

averaged over trials and time windows, then statistically

processed to discard values falling within two standard

deviations of the mean. The connected components were then

extracted from the resulting adjacency matrix and the size of

the connected component at each node is displayed.

Fig. 7: The cardinality of the con-

nected components shown in Fig. 6

mapped to sensor space.

V. CONCLUSION

This paper demonstrated using EEG data that it is possible

to use graph theoretical concepts in order to identify the

active recording sites when a human subject performs a

cognitive task. Dependence graphs were generated from

estimated dependence between pairwise channels, that were

further statistically processed. Several notions from graph

theory were applied to examine the network structure. They

include the node degree, clustering coefficient, local ef-

ficiency, besides measures of centrality (betweenness and

subgraph centrality), and an analysis of connected compo-

nents. Results show that the extracted connected components

differ based on the presented stimulus, and allow robust

discrimination between the conditions of interest. Measures

of centrality perform best among the considered strategies, in

that their discriminatory schemes have more signal-to-noise

ratio (SNR) and less spurious fluctuations. Both measures of

dependence concurred on the identification of active regions.

As future work, it would be interesting to validate the

current methodology on more subjects to solidify the above

conclusions.
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