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Abstract— Exploration of the dynamics of functional brain 

connectivity based on the correlation coefficients of functional 

magnetic resonance imaging (fMRI) data is important for 

understanding the brain mechanisms. Because fMRI data are 

time-varying in nature, the functional connectivity shows 

substantial fluctuations and dynamic characteristics. However, 

an effective method for estimating time-varying functional 

connectivity is lacking, which is mainly due to the difficulty in 

choosing an appropriate window to localize the time-varying 

correlation coefficients (TVCC). This paper introduces a novel 

method for adaptively estimating the TVCC of non-stationary 

signals and studies its application to infer dynamic functional 

connectivity of fMRI data in a visual task. The proposed method 

employs a sliding window having a certain bandwidth to 

estimate the TVCC locally and the window bandwidths are 

selected adaptively by a local plug-in rule to minimize the mean 

squared error. The results show that the functional connectivity 

changes in the visual task are transient, which suggests that 

simply assuming sustained connectivity changes during task 

period might not be sufficient to capture dynamic connectivity 

changes induced by tasks. 

I. INTRODUCTION 

Recent years have witnessed a significant shift in human 

brain function research from functional segregation (i.e., to 

localize activated brain regions associated with specific 

functions) towards functional integration (i.e., to explore 

connectivity among brain regions for specific functions). The 

study of functional brain connectivity (especially, the task 

modulated connectivity changes) from functional magnetic 

resonance imaging (fMRI) data has been drawing increasing 

interests because it is able to reveal the statistical dependence 

among distributed brain regions with high spatial resolution. 

However, the conventional functional connectivity analysis 

approaches are usually model-based and implicitly assume 

sustained changes of connectivity during the whole task 

condition, e.g. psycho-physiological interaction (PPI) [1] and 

dynamic causal modeling (DCM) [2]. Hence, a data-driven 

method, which does not assume any prior structural or 

biophysical knowledge, is needed to justify whether 

connectivity changes in the task are sustained over time. 

In statistics, the Pearson product-moment correlation 

coefficient is a measure of connectivity between two variables 

[3, 4] and it is also a fundamental tool for inferring functional 
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connectivity among distributed cortical regions from fMRI 

data. For stationary signals, the correlation coefficient is 

independent of time. However, fMRI data are non-stationary 

in nature and carry meaningful information that fluctuates 

with time. As a result, the correlation coefficients among 

fMRI time courses are time-varying as well. Most studies on 

functional connectivity only assume the correlation 

coefficients are fixed [5, 6] so that the important dynamic 

changes of the connectivity are totally overlooked. A simple 

but effective time-varying correlation coefficient (TVCC) 

estimation approach is to use a sliding window, which assigns 

larger weights to neighboring data and smaller weights to 

remote data, to localize the correlation information [7]. The 

selection of the window size is extremely critical to the TVCC 

estimation approach. For slow varying covariance, a large 

window size is desirable so that more accurate estimates can 

be obtained by averaging out the additive noise. In contrast, a 

small window is preferred for estimating fast varying 

covariance. Generally, a window with a suitable size could 

help avoid the excessive bias and reduce the estimation 

variance [8]. However, how to select an appropriate window 

for TVCC estimation is still an open problem. 

In this paper, we adopt a local plug-in rule [9, 10] to 

adaptively select the window bandwidth in TVCC estimation 

to address the bias-variance tradeoff problem mentioned 

above. The basic idea of the plug-in rule is that the optimal 

local bandwidth should minimize the mean integrated squared 

error (MISE) of windowed covariance. Compared with 

conventional sliding-window based approaches, the novel 

adaptive windowed TVCC (AW-TVCC) estimation method is 

capable of selecting window size adaptively so as to avoid 

possible over- or under-smoothing due to inappropriate 

window selection. Simulation results show that the proposed 

method can achieve better accuracy than TVCC estimation 

with a fixed window size. Further, we apply the proposed 

AW-TVCC method to identify time-varying functional 

connectivity of fMRI in a visual task. Experiment results show 

that the connectivity changes during viewing checkerboard 

were not fixed but showed considerably transient patterns. 

Thus simply assuming sustained connectivity changes during 

task period might not be sufficient to capture the dynamic 

connectivity information. 

 The rest of this paper is organized as follows. The 

AW-TVCC estimation and its adaptive bandwidth selection 

method using the local plug-in rule are introduced in Section 

II. In Section III, we test the performance of the AW-TVCC 

estimator using simulated signals and then apply it in visual 

task based fMRI dataset to analyze the transient changes of 
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connectivity between different brain regions. Finally, 

conclusion is drawn in Section IV. 

II. ADAPTIVE WINDOWED TVCC ESTIMATION 

A. TVCC Matrix 

Given a group of discrete-time random processes 
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xx x , Nn ,,2,1  ,  k is the number of the 

processes and N is the number of time samples. The estimate 

of the kk  covariance matrix is: 
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Hence, the correlation coefficient matrix is given by: 
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where 
ji ,

Cov  is the observed (i,j)-th entry of Cov matrix. 

For non-stationary signals, the time-varying covariance 

(TVCOV) matrix at each time instant n is: 

 )]()([)( nnEn
H

xxCov  , (3) 

where 
H

x  is the inverse of x . 

Since the prior information of )(nx  is unknown, it is 

difficult to calculate the TVCOV analytically. In local 

estimation, TVCOV can be estimated by using the 

sliding-window approach. More precisely, )(nCov  can be 

calculated from the local data segment, which is assumed to be 

stationary, using a sliding window that assigns large weights 

on local samples and small weights on remote samples. The 

window is generally selected as a positive value function over 

time with finite second moment and symmetric around the 

origin. The corresponding TVCOV can be expressed as: 
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where )/()(
1

huKuK
hh

  is the kernel controlled by a 

bandwidth h. The selection of the bandwidth is critical to the 

accuracy of the estimation and thus adaptive bandwidths are 

desired [11]. 

Therefore, the TVCC can be computed from the TVCOV 

as: 

 



































)()()()(

)(

)()(

)(

)()(

)(

)

11

1

11

1

1111

11

nnnn

n

nn

n

nn

n

(n

kkkk

kk

kk

k

kk

k

CovCov

Cov

CovCov

Cov

CovCov

Cov

CovCov

Cov

CC






. 

(5) 

B. Adaptive Window Selection 

Considering each entry of the matrix )()( nn
H

xx  as a 

non-stationary process: 
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is the observed (i,j)-th entry of 

)()( nn
H

xx . The regression function )(nr  is four times 

continuously differentiable and ε  is a zero mean Gaussian 

process with variance 
2

 . By employing local estimation [9] 

on the data, the estimator )(nr̂  for the regression curve can be 

written as: 
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where )(nh
 
is the selected local bandwidth.  

The mean squared error (MSE) 
2

))())(;(()))(;(MSE( nnhnEnhn rr̂r   provides a local 

measure for the quality of the performance of the estimator. To 

decrease the influence of boundary effects, a weight function v 

is used in the MISE which characterizes the global behavior of 

the estimator. Hence, a global plug-in bandwidth estimator 

should minimize the MISE and asymptotically optimal 

bandwidth is given by: 
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where  dxxK )(
2


 
and   0)(

2

2
dxxxK  are kernel 

parameters, s is the time instant. 

As the asymptotically optimal bandwidth above cannot be 

computed directly, an iterative algorithm is proposed in 

[9,12,13] and some modifications have been made for 

obtaining a local bandwidth estimator for TVCOV. The details 

of the algorithm are given in TABLE I.  

TABLE I.  LOCAL PLUG-IN ESTIMATOR FOR TVCOV 

At each time instant n 

Step 1. Set an initial bandwidth 
1

0
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
 Nnhˆ . 
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Step 3. Iterate 
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Step 4. Let )(
10

nhˆ

 
be the optimal bandwidth at n. 

 

The first eight iteration steps are necessary to stabilize the 

estimator and yield the correct rate of 5/1
N [9]. In TABLE I. 

2
  can be estimated as: 
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The second derivative of r̂  is estimated by a kernel 

estimator with the bandwidth h
~

: 
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is a kernel satisfying the condition in [9] and 
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 , where 

10/1
N  is the inflation factor which 

leads to a bandwidth selector with a variance of the smallest 

possible order. 

The above algorithm can estimate the local adaptive 

bandwidth of each entry to calculate the TVCOV matrix. Then 

we need to compute the TVCC matrix from TVCOV matrix. 

However, as different entries of the TVCOV are 

independently estimated with different bandwidths, the TVCC 

matrix estimated may not be positive definite. To solve this 

problem, a universal bandwidth for all entries of the TVCOV 

is needed at each time instant. Here, we propose to 

approximate the universal bandwidth as the average of the 

optimal local bandwidths of all entries of the TVCOV, and 

such approximation works well in the experiments. 

III. EXPERIMENTS AND RESULTS 

A.  Simulation Test 

In this simulation, two discrete-time signals )(),(
21

nn xx  

were used to evaluate the performance of the proposed and 

conventional methods. )(
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nx  was chosen as 
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Hence, the correlation coefficients of these two signals are 

time-varying as: 
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the kernel function in the AW-TVCC method. 

We compared the AW-TVCC method and the 

conventional method with different fixed bandwidths (4, 20, 

40 and 60) quantitatively by computing the MSE of the TVCC 

estimation under Gaussian noises with different SNRs (20dB 

and 30dB). TABLE II. is obtained from averages of 50 

independent simulations. It can be seen that the MSE of the 

AW-TVCC method is smaller than MSEs of the method with 

fixed bandwidths, which proves that the proposed AW-TVCC 

method can achieve more accurate estimation of TVCCs than 

conventional estimator with fixed bandwidths. 

TABLE II.  MSES OF DIFFERENT METHODS 

    h = 4 h = 20 h = 40 h = 60 Adaptive bandwidth 

SNR = 10 0.0075 0.0118 0.0254 0.0473 0.0043 

SNR = 20 0.0492 0.0196 0.0304 0.0511 0.0184 

B. Analysis of the TVCCs of fMRI dataset 

We further studied visually induced connectivity changes 

when subjects were viewing checkerboard flickering. The 

fMRI data were collected from fourteen male subjects aged 

from 16 to 60 years (mean: 40.2 years). All participants were 

given written informed consent and the local ethics committee 

approved the experimental procedures. The fMRI data have 

240 images and were derived from the NKI-RS multiband 

imaging Test-Retest Pilot Dataset. The fMRI scan comprised 

of 20s fixation, 20s flickering checkerboard viewing, with a 

repetition of three times followed by a fixation condition at the 

end of the scan. The TR is 0.645 second and the voxel size is 3 
3

mm  isotropic.  

Firstly, the preprocessing of the fMRI was performed 

using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/), including 

motion correction, normalization of the functional images via 

normalizing the anatomical image and spatial smoothing using 

an 8mm Gaussian kernel. Moreover, we used general linear 

model (GLM) to get activation relating to the checkerboard 

condition. According to the activation maps, four regions of 

interest (ROIs) were defined in Figure 1. : right middle 

occipital gyrus (MOG), left MOG, right fusiform gyrus (FuG), 

and left FuG. The time series from the four ROIs were 

extracted after removing head motion parameters and signals 

from the white matter and cerebrospinal fluid. 

Secondly, the proposed novel AW-TVCC estimation 

method was used to investigate the changes of the connectivity 

between each pair of the ROIs. To evaluate the task related 

changes of the connectivity, for each post-stimulus time point 

(0~30s), its p-value was computed by locating the fMRI or 

TVCC value under the probability density function 

approximated from the population of pre-stimulus samples 

(-10~0s).  

Figure 2. shows that the fMRI time-courses and their 

TVCCs have clear three-cycle periodical patterns. The 

spectral analysis of fMRI time-courses and their TVCCs were 

displayed in Figure 3. which shows that the TVCCs have a 

main frequency component around 0.025Hz. Moreover, the 

TVCCs also exhibit higher frequency components (around 

0.045Hz), indicating more complex pattern of connectivity 

changes. 

Figure 4. shows the statistic results of the fMRI 

time-courses and TVCCs. The TVCCs in the post-stimulus 

period, especially the TVCCs between (i) LMOG and LFuG, 

and (ii) RMOG and RFuG, increase immediately and faster 

than the increases of fMRI time-courses. However, compared 

with the sustained responses of BOLD activities, the TVCCs 

decrease below the pre-stimulus baseline at the end of the task. 

 

Figure 1.  The group activation map for the checkerboard stimuli. Four 

Yellow circles indicated the ROIs 
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Figure 2.  fMRI time-courses of 4 ROIs and their TVCC estimates 
(averaged across 14 subjects). 

 

 

Figure 3.  Spectra of fMRI time-courses and their TVCC estimates 

(averaged across 14 subjects). 

 

 

Figure 4.  The statistical analysis is performed on fMRI time-courses and 

TVCCs to show the significant difference (shadow region) between the data 
within the post-stimulus interval and those within the pre-stimulus interval. 

The fMRI time-courses and TVCCs are averaged across three cycles and 

fourteen subjects and segmented into pre-stimulus interval (-10s to 0 s) and 
post-stimulus interval (0 s to 30 s). 

IV. CONCLUSION 

A new AW-TVCC estimator is presented in this paper. 

The AW-TVCC method is based on local estimation and 

employs a sliding window with adaptively-selected local 

bandwidths to address the bias-variance tradeoff problem 

encountered in TVCC estimation. The proposed adaptive 

method has been demonstrated to provide an accurate 

estimation of dynamic connectivity among fMRI time-series. 

In conventional fMRI studies, the functional connectivity 

patterns are usually assumed to be static. However, our results 

revealed that the functional connectivity in a visual task is 

significantly dynamic. The dynamic functional connectivity 

may covey important information about the underlying 

physiological and psychological states of subjects, and the 

relationship between such dynamic functional connectivity 

and behavior or physiological parameters will be left for future 

study. 
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