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Abstract² The association of functional connectivity 

patterns with particular cognitive tasks has long been a topic of 

interest in neuroscience, e.g., studies of functional connectivity 

have demonstrated its potential use for decoding various brain 

states. However, the high-dimensionality of the pairwise 

functional connectivity limits its usefulness in some real-time 

applications. In the present study, the methodology of tensor 

subspace analysis (TSA) is used to reduce the initial high-

dimensionality of the pairwise coupling in the original 

functional connectivity network to a space of condensed 

descriptive power, which would significantly decrease the 

computational cost and facilitate the differentiation of brain 

states. We assess the feasibility of the proposed method on EEG 

recordings when the subject was performing mental arithmetic 

task which differ only in the difficulty level (easy: 1-digit 

addition v.s. 3-digit additions). Two different cortical 

connective networks were detected, and by comparing the 

functional connectivity networks in different work states, it was 

found that the task-difficulty is best reflected in the 

connectivity structure of sub-graphs extending over parieto-

occipital sites. Incorporating this data-driven information 

within original TSA methodology, we succeeded in predicting 

the difficulty level from connectivity patterns in an efficient 

way that can be implemented so as to work in real-time. 

I. INTRODUCTION 

Recent advances in neuroengineering have made possible 

WKH�XVH�RI�((*�VLJQDOV�RU�³EUDLQ�ZDYHV´�IRU�FRPPXQLFDWLRQ�

between humans and computers. There is a rapidly growing 

interest in Brain Computer Interface (BCI) and human-

machine interaction  (HMI) areas for methodologies that will 

not only provide communication and control capabilities to 

people with severe motor disabilities, but also will facilitate 

novel applications for healthy subjects (e.g. cognitive 

monitoring [1]). This is a multi-disciplinary research area in 

which engineers and computer scientists interact with 

experts from medicine, neuroscience and psychology. Any 

practical implementation of a BCI design requires an 
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efficient signal processing scheme that includes signal 

conditioning, feature extraction and classification. In this 

paper, we focus on the feature extraction step and introduce 

the use of a tensorial algorithm that learns, in an intelligent 

way, the essence of original, high-dimensional domain of 

pairwise couplings.  The proposed algorithm reduces 

dramatically the necessary efforts in the subsequent 

classification step, which now is performed efficiently in a 

space of lower dimensionality and with minimal 

computational complexity. 

Most of the previous research works in brain decoding 

represented functional connectivity graphs (FCGs) as 

vectors in a high-dimensional space (e.g. [2-4]).  The main 

drawback of such an approach (and the related feature 

extraction algorithms) is that it overlooks the inherent format 

of FCGs. Each FCG has a natural tabular representation and 

hence can be thought of as second-order tensor. The 

relationship between the row and column vectors of the 

associated matrix might be important for deriving a suitable 

low-dimensional representation (projection), especially 

when the number of available connectivity patterns is small. 

To overcome this limitation, we treat FCGs as tensors and 

resort to tensor subspace analysis (TSA) [5] as the most 

appropriate feature extraction algorithm.  

The principal scope of this work was to exploit the 

recently introduced subspace learning algorithm of TSA and 

suggest algorithmic strategies that will treat the functional 

connectivity estimates directly (i.e. without computing 

network metrics), and, mainly, at the level of individual 

trials. In our approach, we treated the trial-dependent 

functional connectivity matrix as a tensor and used the TSA 

analysis to project it in a lower-dimensionality space where 

assessments of different cognitive loads would be more 

efficient. The methodological advantage relies on the 

concept that once the mapping (from trial-based functional 

connectivity domain to a reduced space) is learned, its 

application to data from an unseen trial will only require 

(apart from the connectivity estimates) a few matrix 

multiplications.  To provide ³a proof of concept´', we 

describe below the algorithmic steps taken (and the related 

evaluation) for discriminating between an easy and difficult 

arithmetic task. 

II. SUBSPACE LEARNING BASED ON TENSOR ANALYSIS 

    In this section, we present a new algorithm for FCG 

representation based on the considerations of multi-linear 
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algebra and differential geometry. Given some FCGs 

sampled from the functional connectivity manifold, we can 

build an adjacency graph to model the local geometrical 

structure of the data manifold. TSA derives a projection that 

respects this graph structure. The obtained tensor subspace 

provides an optimal linear approximation to the FCG 

manifold. 

A. The linear Dimensionality Reduction Problem in 

Tensor Space 

    Let 1 2m m
X

u��  be a FCG of size
1 2m mu . Mathematically, 

X  can be thought as a 2
nd

 order tensor (or 2-tensor) in the 

tensor space 21 mm ��� . The generic problem of linear 

dimensionality reduction in the second order space is the 

following. Given a set of tensors (i.e. matrices) 

21
1,...,

nn
mXX ���� find two transformation matrices U of 

size 
11 ln u and V of 

2 2n lu  that maps these m  tensors to a set 

of tensors ),(,..., 2211
21

1 nlnlYY ll
m ������ , such that 

iY  

³UHSUHVHQWV´�
i

X , where VXUY i
T

i  . The method is of 

particular interest in the special case where MXX m �,...,1

and M  is a nonlinear sub-manifold embedded in 1 2n n� �� . 

B. Optimal Linear Embedding  

    The domain of FCGs is most probably a nonlinear sub-

manifold embedded in the tensor space. With the adopted 

TSA, we sought to estimate geometrical and topological 

properties of the sub-PDQLIROG� IURP� ³VFDWWHUHG� GDWD´ (i.e. 

randomly selected connectivity matrices) lying on this 

unknown sub-manifold. We will consider the particular 

question of finding a linear subspace approximation to the 

sub-manifold in the sense of local isometry. TSA is 

fundamentally based on Locality Preserving Projection 

(LPP) [6]. 

    Given m data points 
1{ ,..., }

m
X X X sampled from the 

FCG sub-manifold 1 2n n
M �� �� , one can build a nearest 

neighbor graph G  to model the local geometrical structure 

of M . Let S  be the weight matrix of G . A possible 

definition of S  is as follows: 
2
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0                   Otherwise
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where t  is a suitable constant. The function 

2
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is the so 

called heat kernel which is intimately related to the manifold 

structure. .  is the Frobenius norm of matrix. In the case of 

supervised learning (classification labels are available), the 

label information can be easily incorporated into the graph 

as follows: 
2

    j iIf X  and X  share the same label;                       (2)

0                Otherwise
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    Let U  and V  be the transformation matrices. A 

reasonable transformation respecting the graph structure can 

be obtained by solving the following objective functions: 

2

,
min                                                                           (3)T T

i j ij
U V

ij

U X V U X V S�¦

The objective function incurs a heavy penalty if neighboring 

points 
i

X  and 
jX  are mapped far apart. With D  be a 

diagonal matrix ii ijj
D S ¦  and after mathematical 

calculations (for further details see [3]), the optimization 

problem was restricted to the following equations: 

U U U(D  - S )V     D V                                                                 (4)O 

Once V  is obtained, U  can be updated by solving the 

following generalized eigenvector problem: 

V V V(D  - S )V  �' 9���������������������������                                          (5) 

Thus, the optimal U and V  can be obtained by iteratively 

computing the generalized eigenvectors of (4) and (5). 

III. EXPERIMENTAL DATA (FROM EEG RECORDINGS TO 

TRIMMED FCGS)  

A. Experimental task 

We analyzed functional connectivity patterns derived from 

EEG recordings of one subject (male) performing a mental 

arithmetic task (addition) with six levels of difficulty. EEG 

data was recorded from 64 channels at 256 Hz with an 

ActiveTwo Biosemi systm and referenced using average 

reference. The experiment was segmented into blocks of one 

minute, with a thirty second rest period between each block. 

Within a block (labeled as different levels, e.g., Lvl3 & Lvl5 

in Fig. 1), all problems were of the same difficulty level (0 

to 5). A schematic diagram of the experimental protocol is 

presented here: 

 

Fig.1. Sequence of events in the mental arithmetic task. 

    The details of the experiments have been described 

previously [7]. Briefly, arithmetic summation problems 

consisting of two figures were displayed continuously until 

the subject pressed the space bar to indicate that he had 

obtained the answer. The problem was then replaced by a 

proposed answer that was either equal to, larger than, or 

smaller than the true answer, with a probability of 33% for 

each case. The participant then indicated which one of the 

three possibilities was the correct one by pressing the 

corresponding arrow key (down for equal, right for larger, 

and left for smaller). Difficulty levels were randomized with 

the constraint that all difficulty levels were presented an 

equal number of times and that adjacent blocks were of a 

different difficulty level. After three repetitions of the six 

difficulty levels, the participant had a 5-minute relaxation 

break comprising a slide show of landscape pictures. 
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B. Preprocessing 

    Using the trigger-information about when the numbers 

were presented on the screen and the user's reaction time 

stamp, we segmented the signals into trials (of variable 

length; starting 100 ms after the onset of the stimulus and 

lasting up to 200 ms before button press). Biological 

artifacts were diminished by means of ICA [8, 9] employing 

function runica from EEGLAB [10]. Signals were filtered 

within frequency range of 0.5 to 45 Hz (from / to � band). 

This study intended to introduce a TSA based FCG analysis 

method and investigate its sensitivity in differentiating 

between different cognitive workload. Therefore, the data 

from level 1 (addition of 1-digit numbers) and level 5 

(addition of 3-digit numbers) was used for the following 

investigation.   

C. Initial FCG Derivation and standard network analysis 

    Since we have recently showed that phase synchrony 

contributes significantly to the neural substrate of mental 

calculations [11], we commenced by constructing functional 

connectivity graphs using a phase coupling estimator called 

PLV [8, 11, 12], for each trial, condition and frequency 

bands. We then computed the Local Efficiency (denoted 

hereafter as LE [8]). The LE was defined as: 
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wherein 
ik  corresponded to the total number of spatial 

directed neighbors (first level neighbors) of the current node, 

N  was the set of all nodes in the network, and d  set the 

shortest absolute path length between every possible pair in 

the neighborhood of the current node.  

 

Fig.2. Brain topographies of nodalLE between tasks of level 1 and 

level 5. 

    LE is understood as a measure of the fault tolerance of the 

network, indicative of how well sub-graphs exchange 

information when the indexed node is eliminated [13, 14]. 

Specifically, each node was assigned the shortest path length 

within its sub-graph, Gi. In order to reduce the computational 

load of TSA, we exploited the differences seen in nodal
LE

 

measurements (expressing information exchange rate in the 

vicinity of each node), between the two extreme conditions 

(level 1 v.s. level 5). Fig.2 compares topographically these 

measurements across frequency bands and (in accordance 

with related literature) revealed two sensors (PO7 and PO8) 

that differ systematically ± across frequency bands ± 

between the two difficulty levels.      

    Fig. 3 shows the averaged values of LE
PO7

 & LE
PO8 

across 

frequency bands in both levels. Statistical significance of the  

differences in LE
PO7

 & LE
PO8

 associated with Level 1 and 

Level 5 was assessed in each frequency band independently 

(p < 0.0001/7, Bonferroni corrected). 

 
Fig.3. Trial±averaged nodalLE measurements (across various 

frequency bands) for difficulty Level 1 and 5 for a) PO7 and b) 

PO8 sensors (p < 0.0001/7, Wilcoxon Test, Bonferroni corrected). 

D. Trimmed FCGs 

    We reduced the input for tensor analysis from FCGs of 

dimension N Nu  (where 64N   denotes the original 

number of sensors) to sub-graphs of size ' 'N Nu  (with 

' 12N   sensors corresponding to the spatial neighborhood 

of PO7 and PO8 sensors).  Each connection can be seen as 

feature used in TSA. The total number of connections 

between sensors belonging in the neighborhood is: 

66/2016§3% of the total number of possible connections in 

the original graph. The distribution of PLV values over the 

parieto-occipital (PO) brain regions and the topographically 

thresholded functional connections are shown in Fig.4. The 

threshold was estimated as the mean+S.D. from the PO sub-

graph from level 1. PLV values were higher in level 1 

compared to level 5 as can be seen in Fig.4 (c) & (d). 

 

Fig.4. Topography of Parieto-occipital functional connections in 

level 1 (a) and level 5 (b) after thresholding; c) and d) indicate the 

distribution of PLV values averaged across trials from PO brain 

regions in level 1 and 5 correspondingly. The threshold level is 

indicated in the color bar. 
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TABLE I 

SUMMARY OF THE CLASSIFICATION PERFORMANCE 

 Bilaterally PO  Left PO  Right PO 

 TSA LDA  TSA LDA  TSA LDA 

G 93.59 83.28  87.81 80.39  91.68 79.31 

T 96.70 85.65  89.86 81.29  90.40 77.41 

D1 96.13 86.42  91.13 82.14  90.27 80.28 

D2 95.00 84.12  90.31 79.41  87.63 79.31 

E1 94.40 83.49  87.63 78.39  86.54 76.40 

E2 97.59 87.21  83.86 76.25  85.86 76.05 

J 95.86 87.34  84.86 75.83  87.54 76.91 

Values are mean correct classification in percentage based on three 

different sub-graphs: bilateral PO sub-graph, left PO sub-graph and right 

PO sub-graph (PO = Parieto-occipital). TSA = tensor subspace analysis, 

LDA = linear discriminant analysis. 

IV. RESULTS 

A. Machine learning validation 

The TSA algorithm, followed by a k-nearest-neighbor 

classifier (with k=3), was tested on trial-based connectivity 

data from all bands. The following results have been 

obtained through a cross-validation scheme that shuffle the 

trials and get 90% for training and 10% for testing. The 

following table summarizes the average classification rates 

derived after applying the above cross-validation scheme 

100 times.  Our analysis was based on both neighbors of 

PO7 and PO8 and also to each one separately. Bilaterally 

approach includes also inter-hemispheric connections. The 

selected options for TSA were: Weight mode=þeat Kernel; 

Neighbor mode=1; Supervised learning; Number of 

dimensions=3. Table 1 summarizes the classification 

performance of TSA+knn and of LDA+knn (Linear 

Discriminant Analysis) as a baseline validation feature 

extraction algorithm. 

V. DISCUSSION  

Based on our experiments, that tensorial treatment of 

FCGs increased the discriminability between easy and 

difficult mental workload task. Future work should test 

whether a more detailed assessment of the cognitive load is 

feasible in the derived subspace (the learning task should be 

switched from classification to regression). Our network 

analysis revealed two sensors the connectivity of which 

varied systematically across frequency bands based on the 

difficulty level of the task (PO7 & PO8). This result is in 

accordance with the anticipation that parietal brain regions 

participate in visual identification of digits and in quantity 

representation [15]. Even though prefrontal cortex is vital for 

the on-line maintenance of the intermediate results of a 

FDOFXODWLRQ� SURYLGLQJ� D� ³ZRUNLQJ� PHPRU\´� ZRUNVSDFH�

especially in the difficult addition [15], classification 

performance based on frontal areas in � band were lower 

compared to PO brain regions (data not shown here). The 

investigation of the interconnectivity pattern changes 

between the PO regions and prefrontal cortex under different 

cognitive load is the subject of a future study. The 

introduced methodological approach can find application in 

many other situations where brain state has to be decoded 

from functional connectivity structure. After extensive 

validation, it might prove an extremely useful tool for on-

line applications of human-machine interaction. 
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