
  

 

Abstract— Memory processes are based on large cortical 

networks  characterized by non-stationary properties and time 

scales which represent a limitation to the traditional 

connectivity estimation methods. The recent development of 

connectivity approaches able to consistently describe the 

temporal evolution of large dimension connectivity networks, in 

a fully multivariate way, represents a tool that can be used to 

extract novel information about the processes at the basis of 

memory functions. In this paper, we applied such advanced  

approach in combination with the use of state-of-the-art graph 

theory indexes, computed on the connectivity networks 

estimated from high density electroencephalographic (EEG) 

data recorded in a group of healthy adults during the 

Sternberg Task. The results show how this approach is able to 

return a characterization of the main phases of the investigated 

memory task which is also sensitive to the increased length of 

the numerical string to be memorized.  

I. INTRODUCTION 

Several studies in the neuroscience field revealed that the 
processes at the basis of attentive or memory processes 
involve not isolate and specific cerebral areas but groups of 
brain areas strictly connected each other [1]. Moreover, the 
communication between such areas is characterized by a 
specific timing and is subjected to a temporal evolution 
strictly linked to the explicated cognitive function [2].  

For this reason, the study of complex cerebral 
mechanisms such as those at the basis of cognitive processes 
required methodologies able to describe phenomena evolving 
in time and which globally involve the brain in terms of 
effective networks. The traditional methodologies do not 
allow to follow the temporal evolution of cerebral networks 
with sufficient accuracy, taking into account all the sources 
involved in the processes [3]. The first proposed approach in 
this sense was based on the estimation of time-varying 
connectivity patterns in short windows, in which the 
hypothesis of stationarity of signals was verified [4]. The 
second proposal consisting in a recursive algorithm involving 
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a weighted influence of the past of the investigated signal [3] 
improved the estimates accuracy but didn’t allow to include 
in the process all the cerebral sources due to its limitations 
related to the model dimension [5, 6]. The methodological 
advancements provided during the recent years led to the use 
of a generalized version of Kalman filter for the development 
of a consistent and reliable approach for the highly accurate 
estimation of time-varying connectivity patterns involving all 
the sources of the cerebral activity in the process [7, 8].  

The new proposed approach for time-varying 
connectivity estimation, combined with advanced 
methodologies for the extraction of salient indexes describing 
the most important features of the investigated networks, 
were used for the study of cerebral mechanisms at the basis 
of short-term memory. In particular, we performed a study, 
conducted in normal healthy adult subjects (N=17) involved 
in the Sternberg memory task. 

The cutting edge methodologies used in the study allowed 
to define and compute descriptors able to characterize with 
high accuracy the investigated cognitive function and to 
follow sample by sample its temporal evolution, providing 
consistent results among the involved population. 

II. METHODS 

A. Adaptive Partial Directed Coherence 

The PDC [9] is a spectral measure, used to determine the 

directed influences between any given pair of signals in a 

multivariate data set.  

The original formulation of such estimator is based on 

the hypothesis of stationarity of signals included in the 

estimation process. Unfortunately, such hypothesis leads to a 

complete loss of the information about the temporal 

evolution of estimated information flows. For overcoming 

this limitation, a time varying adaptation of squared PDC 

was introduced. The adaptation consisted in modifying the 

original formulation of PDC by including dependence from 

the time in the MVAR coefficients. Thus, the adaptive 

squared PDC estimator can be defined as follows: 
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where t refers to a dependence of the MVAR coefficients 

from time and Λij(f,t) represents the ij entry of the matrix of 

MVAR model coefficients Λ at frequency f and time t. 

Advanced Methods for Time-Varying Effective Connectivity 

Estimation in Memory Processes* 

L. Astolfi, J. Toppi, G. Wood, S. Kober, M. Risetti, L. Macchiusi, S. Salinari, F. Babiloni, D. Mattia 

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 2936



  

B. General Linear Kalman Filter 

In the GLKF an adaptation of the Kalman Filter to the 
case of multi-trial time series is provided. In particular, the 
equations at the basis of the algorithm are: 
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where On represents the observation, Qn is the state process, 
Hn and Gn are the transition matrices and Vn and Wn are the 
additive noises. To obtain the connection with the time-
varying MVAR it is necessary to make the following 
associations:  
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where K denotes the number of trials, whereas p is the model 

order, x is the vector of time series and d is the dimension of 

the measured process. The details of the algorithm are 

provided in [7]. 

C. Graph Theory Approach 

A graph is a mathematical object consisting in a set of 
vertices (or nodes) linked by means of edges (or 
connections) indicating the presence of some sort of 
interaction between the vertices. The structure of the 
investigated graph is described by means of an adjacency 
matrix G. When a directed edge exists from the node i to j, 
the corresponding entry of the adjacency matrix is Gij = 1, 
otherwise Gij = 0. Among all the indexes which can be 
defined for the characterization of investigated networks, we 
decided to consider three recently introduced indexes 
allowing to describe the existence of asymmetries and 
influences between different parts of the scalp [10]. 

Degree. The degree of a node is the number of links 
connected directly to it. In directed networks, the indegree is 
the number of inward links and the outdegree is the number 
of outward links. Connection weights are ignored in 
calculations. It can be defined as follows: 

 
   ∑                      (5) 

 
where  aij represents the entry ij of the Adjacency matrix A. 
Symmetry. The symmetry index is the difference in the 
number of internal connections between two different spatial 
regions. It could assume values in the range [-1 ; 1] and it is 
defined as follows  
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where 'A  is the arranged version of A as reported in [10] 
and N1 and N2 are the number of connections in the two 
spatial regions, respectively. 

Influence. The influence index represents the difference in 
the number of inter connections between two different 
spatial regions. It could assume values in the range [-1 ; 1] 
and it is defined as follows 
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The last two indices were used in the study for investigating 
the symmetries and influences between the two hemispheres 
and between frontal and parietal areas of the scalp. 

D. High Density EEG Study 

17 healthy adult subjects (ranging 40 to 60 years old; 8 

males) were enrolled in the study. EEG signals were 

recorded by means of 60 electrodes positioned according to 

the extended 10–20 electrode placement system against a 

linked mastoid reference. EEG signals were digitized at 500 

Hz and filtered with a 0.01 Hz high-pass and a 100 Hz low-

pass. Subjects involved in the experiment were asked to 

perform a modified version of the Sternberg task [11], a 

paradigm built for eliciting cerebral processes at the basis of 

short-term memory. The subject is firstly given a short 

period for memorizing a series of numeric digits (encoding 

phase), secondly, he/she has to retain the memorized 

information for a certain period (storage phase) and then 

he/she has to retrieve it in a short time interval (retrieval 

phase). The subjects were instructed to answer, as quickly as 

possible, whether the probe was in the previous set of digits 

or not. The size of the initial set of digits determined two 

levels of difficulty for executing the task (4 digits → easy; 6 

digits → difficult). Details about the timing of the 

experiment were reported in Fig.1. 

 

Figure 1. Timing of Sternberg paradigm. The crosses represent the fixation 

periods. The timing is as follows: 2000ms of fixation, 1000 ms to memorize 

the string of digits (Encoding phase), 2000 ms of Storage phase, 250 ms of 
presentation of the digit, 1250 ms of Retrieval of the information. 

E. Effective Connectivity Analysis 

EEG signals were down sampled to 100 Hz and band-pass 

filtered in the range [1-45] Hz. Independent Component 

Analysis (ICA) was used for removing ocular artifacts. EEG 

traces were segmented in relation with the specific timing of 

the paradigm, [0 6000] ms according to the onset of the first 

window containing the digits series and classified according 

to different conditions (Target_4digits, No Target_4digits, 

Target_6digits, No Target_6digits). Residual artifacts were 

then removed by means of a semi-automatic procedure 

based on a threshold criterion. Only the artifacts-free trials 
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were subjected to the subsequent effective connectivity 

analysis performed by means of GLKF approach. The 

connectivity patterns estimated for each time sample were 

averaged in three time intervals: [0:1000] ms (encoding 

phase); [1000:3000] ms (storage phase) and [3000:6000] ms 

(retrieval phase) and in four frequency bands, defined 

according to the Individual Alpha Frequency (IAF) [12]. To 

discard all the effects due to the environment or to the 

stimulation used for administering the paradigm, a statistical 

comparison between each condition and the corresponding 

baseline was computed for a significance level of 5% False 

Discovery Rate (FDR) corrected for multiple comparisons. 

The baseline period was the time interval [-1000:0] ms 

defined according to the onset of the screen containing the 

digits series. During this interval, the subject had to look at 

the fixation cross. 

  
Figure 2. Outdegree maps computed from connectivity patterns in alpha 

band, for a representative subject during the Storage phase of Sternberg 

paradigm. Target condition, 4 digits (panel a) and 6 digits (panel b). 

III. RESULTS 

In Fig.2 we reported the outdegree maps (representing the 

total number of significant connections spreading from each 

electrode in the connectivity network) obtained for a 

representative subject during the Storage phase of Sternberg 

paradigm, in alpha band. Outdegree maps are referred to the 

Target condition, for the 4 digits (panel a) and 6 digits (panel 

b) cases, and are represented on a 2D scalp model, seen from 

above with the nose pointing to the top of the page. The hue 

of blue code for the degree of information spreading from 

the corresponding electrodes. Similar degree maps resulted 

from the No Target condition.  

Outdegree maps reported in Fig.2 show some common 

features for the two considered conditions. The main 

difference between the two cases consists in a stronger 

involvement of FT7 electrode as source of information 

during the 6 digits case with respect to the 4 digits one. The 

results reported here for a representative subject were 

consistent among the investigated population. 

Once we have qualitatively described the main properties of 

the investigated networks, asymmetry and influence graph 

indexes can help us to describe the features of the achieved 

patterns from a quantitative point of view, and to verify their 

consistence among the population included in the study. In 

Fig.3 we reported an average among the population of time-

varying asymmetry and influence indexes computed on 

connectivity patterns elicited during the Sternberg task, in 

alpha band, for the two conditions 4 (in blue) and 6 (in red) 

digits. In particular, the influence index was computed 

between the two hemispheres, while the asymmetry was 

computed between the anterior and posterior parts of the 

scalp. In order to validate the achieved values for graph 

indexes and to distinguish them from chance, we generated 

50 random graphs for each real network, each time 

maintaining the same edges density. Statistical differences 

between the considered index and the one achieved from the 

average across 50 random graphs were indicated sample by 

sample by means of the symbol (*) in green in Fig.3. 

 
Figure 3. Average value among population of time-varying asymmetry 
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and influence indexes computed on connectivity patterns elicited during 

the Sternberg task in alpha band, for the two conditions 4 (in blue) and 6 

(in red) digits. The influence was computed between the two hemispheres, 

while the asymmetry was computed between anterior and posterior part of 

the scalp. Statistical differences between the index and the chance level 

were indicated sample by sample by means of the symbol (*) in green. The 

three memory phases were highlighted by means of different colors 

(blue encoding, red  storage, violet  retrieval) 

Results reported in panel a) revealed differences between 

the two cases 4 and 6 digits. In the 4 digits case the influence 

between the two hemispheres remained around zero without 

differing from the chance level for any of the time samples 

included in the estimation, except for the initial phase of the 

encoding phase, showing an influence directed from the 

right to the left hemisphere. In the 6 digits condition, the 

results showed significant values of the influence index 

during the storage and retrieval phases, meaning a 

significant influence of the right hemisphere to the left one. 

Panel b) revealed similar behavior for the two conditions 

4 and 6 digits. In particular, we found significant positive 

values for asymmetry index between anterior and posterior 

parts of the scalp at the end of encoding phase and for all the 

entire storage phase in both conditions. The result, thus, 

confirmed a higher involvement of the anterior region of the 

scalp in respect to the posterior one during the first two 

memory phases. 

IV. DISCUSSION 

A body of techniques at the state of the art in the estimation 

of effective connectivity in the time-frequency domain, 

together with well-established indices for the interpretation 

of the connectivity networks were applied for the study of 

cerebral processes at the basis of short-term memory. 

The results show that the methodological advancements 

in effective connectivity allowed to extract time-varying 

patterns consistent and reliable among the population 

without any a priori selection of a subset of electrodes 

related to the task under investigation. In fact, the inclusion 

of all the electrodes used for the high resolution EEG 

recording into the multivariate analysis allowed to avoid the 

presence of spurious links due to the “hidden source 

problem”. The consequent application of advanced 

approaches for the extraction of graph indexes from the 

time-varying networks led to a complete characterization of 

the temporal evolution of the network with a high resolution 

in time. The use of such approaches allowed for the first 

time to describe changes in the network behaviour across the 

different investigated memory phases. 

Moreover, the results obtained are in agreement with 

previous works in literature describing the neurophysiology 

at the basis of the investigated cognitive function. In 

particular, the high involvement of frontal cortex and the 

high influence of the right parietal cortex on the left fronto-

temporal part of the brain have been demonstrated to be at 

the basis of short term memory processes [13, 14]. The 

novelty introduced by the results presented in this paper 

consisted in the high temporal resolution by which the 

phenomena were described and in the possibility to use the 

graph indexes to quantify the task difficulty (differences 

between the 4 digits and 6 digits conditions). 

V. CONCLUSION 

In conclusion, advanced methodologies for time-varying 

effective connectivity estimation combined with accurate 

approaches for the extraction of graph indexes allowed to 

describe the most important features of the networks at the 

basis of short term-memory processes and to follow their 

temporal dynamics with a high temporal resolution.  

The methodological approach described in this paper 

could open the way to the use of time-varying effective 

connectivity for the comprehension of phenomena at the 

basis of complex tasks not completely investigated so far.  
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