
  

  

Abstract— Graph theory is a powerful mathematical tool 
recently introduced in neuroscience field for quantitatively 
describing the main properties of investigated connectivity 
networks. Despite the technical advancements provided in the 
last few years, further investigations are needed for overcoming 
actual limitations in the field. In fact, the absence of a common 
procedure currently applied for the extraction of the adjacency 
matrix from a connectivity pattern has been leading to low 
consistency and reliability of ghaph indexes among the 
investigated population. In this paper we proposed a new 
approach for adjacency matrix extraction based on a statistical 
threshold as valid alternative to empirical approaches, 
extensively used in Neuroscience field (i.e. fixing the edge 
density). In particular we performed a simulation study for 
investigating the effects of the two different extraction 
approaches on the topological properties of the investigated 
networks. In particular, the comparison was performed on two 
different datasets, one composed by uncorrelated random 
signals (null-model) and the other one by signals acquired on a 
mannequin head used as a phantom (EEG null-model). The 
results highlighted the importance to use a statistical threshold 
for the adjacency matrix extraction in order to describe the 
real existing topological properties of the investigated 
networks. The use of an empirical threshold led to an erroneous 
definition of small-world properties for the considered 
connectivity patterns. 

I. INTRODUCTION 
The methodological advancements in the field of 

effective connectivity allow today the description of 
neurological mechanisms at the basis of complex cerebral 
processes involving a large number of sources. Once 
qualitatively described the connectivity pattern achieved for 
the investigated condition, a quantitative characterization of 
its main properties is necessary in order to synthetize the 
huge amount of information derived from the application of 
such advanced methodologies.  
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The use of salient indexes describing important features 
of brain connectivity patterns has been revealed as important 
for the interpretation, comparison and statistical analysis of 
functional networks. However, such challenging topic needs 
to be improved and refined in order to be performed in a 
consistent, stable and repetitive way.  

In the last ten years, a graph theoretical approach was 
proposed for the characterization of the topological properties 
of real complex networks [1]. The process of graph indexes 
extraction is based on the definition of an adjacency matrix 
describing the structure of the investigated network. The 
methodologies currently available for adjacency matrix 
extraction consist in a comparison between the connectivity 
matrix and a threshold usually defined in empirical way. 
Such empirical criteria, which often modify the topological 
structure of the network, could highly affect the properties of 
investigated patterns [2]. In particular, four criteria are 
typically adopted: i) an arbitrary threshold, to discard the 
weak connections [3]; ii) the largest possible threshold that 
allows all nodes to be connected at least to another node in 
the network [4]; iii) fixing the average degree within the 
networks in order to maximize the small-world properties of 
the network [5]; iv) fixing the edge density of the network, 
i.e. the number of existing edges divided by the number of 
possible edges [5]. 

In the present paper we aim at investigating the effects of 
adjacency matrix extraction procedures on the interpretation 
of graph theory indices as descriptors of the global and local 
properties of considered networks. The objective was to 
define a reliable approach for the derivation of salient indices 
from connectivity networks estimated by means of 
multivariate methods. In particular we used two different 
datasets, modeling the ideal and the experimental null-case 
connectivity conditions, with the purpose of comparing one 
of the methods extensively used in graph theory applications 
for extracting adjacency matrices from the connectivity 
patterns (i.e. the method based on fixing the edge density) 
with the new proposed method based on the thresholds 
extracted by means of the statistical validation of 
connectivity patterns [6].  

II.  METHODS 

A. Partial Directed Coherence 
The PDC [8] is a full multivariate spectral estimator, 

used to describe the directed influences between any given 
pair of signals in a multivariate data set. This estimator was 
demonstrated to be a frequency version of the concept of 
Granger causality [9]. 

It is possible to define PDC (πij(f)) as: 
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where Λij(f) is the (i,j) entry of the connectivity matrix Λ 
containing the frequency version of the associated 
Multivariate Autoregressive (MVAR) model coefficients 
and N represents the number of signals included in the 
estimate.           

In this study we used the square formulation of PDC [7] 
due to its higher accuracy and stability. 

B. Statistical Assessment of Connectivity Estimates: 
Shuffling Procedure 
The investigated connectivity patterns have to be 

statistically validated in order to discard all the spurious links 
due to random correlation between signals included in the 
estimation process. In order to assess the significance of 
estimated patterns, the values of effective connectivity should 
be statistically compared with a threshold level which 
represents the lack of communication between the considered 
nodes. The shuffling is a time consuming procedure, 
introduced in 2001, which allows to achieve null-case 
distribution by iterating the PDC estimation on different 
surrogate data sets obtained by shuffling the phases of 
original traces in order to disrupt the temporal relations 
between them [8]. The simultaneous execution of univariate 
statistical tests, one for each couple of nodes, for each 
direction and frequency sample, led to the necessity to 
introduce corrections for multiple comparisons in the 
significance level imposed in validation process. In this study 
we used the False Discovery Rate (FDR), whose higher 
performances in discarding both false positives and false 
negatives have been already demonstrated [9]. 

C. Graph Theory 
A graph is a mathematical object consisting in a set of 

vertices (or nodes) linked by means of edges (or 
connections) indicating the existence of information flows 
between the considered nodes. Graph structure is fully 
described by means of an adjacency matrix G: 
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where Λij represents the connectivity matrix and τ the 
empirical or statistical threshold used for the process. 
Several indices based on the elements of such matrix can be 
extracted for the characterization of the main properties of 
investigated networks. 

Characteristic Path Length. The characteristic path length is 
the average shortest path length (i.e. minimum number of 
edges that link one node to another) in the network. It can be 
defined as follows 

∑
∑

∑
∈

≠∈

∈ −
==

Ni

ijNj ij

Ni
i N

d

N
L

N
L

1
11 ,  (3) 

where Li is the average distance between node 𝑖 and all other 
nodes and dij is the distance between node i and node j. 

Clustering Coefficient. The clustering coefficient describes 
the density of interconnections between the neighbors of a 
node [10]. It is defined as the fraction of triangles around a 
node or the fraction of node’s neighbors that are neighbors 
of each other. The binary directed version of Clustering 
Coefficient is defined as follows [11]: 
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where ti represents the number of triangles involving node i, 
ki

in and ki
out are the number of incoming and outcoming 

edges of nodes i respectively and gij is the entry ij of 
adjacency matrix.  

Small-Worldness. A network G is defined as small-world 
network if LG > Lrand and CG >> Crand where LG and CG 
represent the characteristic path length and the clustering 
coefficient of a generic graph and Lrand and Crand represent 
the correspondent quantities for a random graph [10]. On the 
basis of this definition, a measure of small-worldness of a 
network can be introduced as follows 
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So a network is said to be a small-world if S > 1 [12] . 

 
Figure 1. Results of ANOVA performed on the Small-Worldness Index 

computed on networks inferred from simulated data, using METHOD and 
EDGE as within main factors. The green dotted line represents the 

threshold above which a network is said to be “small-world”. The symbol 
(*) indicates a statistical difference between shuffling procedure and fixed 

edge density method, highlighted by Tukey’s post hoc test (p<0.05). 

D. Description of the Study 
Two datasets were used in the study: i) “simulated data” 

composed by random signals completely uncorrelated 
among each other; ii) “mannequin data”, achieved by 
simulating an EEG recording on a head of a synthetic 
mannequin by using a 61-channel system. The two datasets 
represented a null model for connectivity estimator in ideal 
case and during experimental condition respectively. In fact, 
the absence of physiological content in the signals recorded 
on mannequin allows modeling the absence of information 
flows between electrodes, but at the same time, the use of a 
real EEG cap, with electrodes positioned as 10-20 systems 
and references placed at the earlobes, models the effects of 
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some factors typical of an EEG recording situation 
(electrodes and ground position, monitor interference, 
environmental noise). 

Both datasets were subjected to the following signal 
processing procedure: 
1) Effective Connectivity estimation by means of PDC 
2) binary adjacency matrix extraction by means of threshold 
τ achieved in two different ways: 

- by shuffling procedure for a significance level of 5% 
in two conditions: i) not corrected for multiple 
comparisons (Case 1) and ii) adjusted for multiple 
comparisons by False Discovery Rate (Case 2).  

- by fixing the edge density k to predefined values. The 
levels of such values were chosen equal to those 
achieved by the shuffling procedure, to avoid 
different performances between the two methods due 
to the selection of a different density of edges. 

3) Extraction of the Small-Worldness (SW) index from the 
adjacency matrices achieved with both methodologies 

Such procedure was repeated 50 times in order to 
increase the power of the following statistical test (ANOVA) 
computed for comparing the two approaches used for the 
extraction of the adjacency matrices. In particular we 
computed a two-way ANOVA considering the SW index as 
dependent variable. The main factors were the method used 
for extracting adjacency matrices (METHOD: Shuffling and 
Fixed Edge Density procedures) and the edge density 
(EDGE: Case 1 and Case 2). The ANOVA was applied 
separately to both simulated and mannequin data. 

 
Figure 2. Results of ANOVA performed on the Small-Worldness Index 

computed on networks inferred from mannequin data using METHOD and 
EDGE as within main factors. The red dotted line represents the threshold 

above which a network is said to be “small-world”. The symbol (*) 
indicates a statistical difference between shuffling procedure and fixed 
edge density method, highlighted by Tukey’s post hoc test (p<0.05). 

III. RESULTS 

Results of ANOVA revealed statistical influence of the 
factors METHOD (p<0.00001, F=34.87) and METHOD x 
EDGE (p<0.00001, F=13.46) on the SW index computed on 
connectivity networks inferred from simulated data. In Fig.1 
we reported the correspondent results. In particular we 
showed the plot of means with respect to the interaction 
between METHOD and EDGE factors. Fig.1 highlighted 
that the use of the method based on a fixed edge density 
revealed “small-world” properties of the network obtained 

from uncorrelated signals, for both density values (S>1). On 
the contrary, the application of the shuffling procedure 
allowed to correctly identify the absence of small-worldness 
in the network (S<1). Such results were confirmed by 
Tukey’s pairwise comparisons. 

 
Figure 3. Results of ANOVA performed on the Small-Worldness Index 

computed on networks inferred from mannequin data at scalp  and cortical 
levels, using LEVEL and EDGE as within main factors. The adjacency 

matrix was extracted by means of shuffling procedure. The red dotted line 
represents the threshold above which a network is said to be “small-

world”. The symbol (*) indicates a statistical difference between estimates 
provided at scalp and cortical levels, highlighted by Tukey’s post hoc test 

(p<0.05). 

Results revealed statistical influence of the main factors 
METHOD (p=0.0001, F=23.42), EDGE (p<0.00001, 
F=104.47) and METHOD x EDGE (p=0.00021, F=15.99) on 
the SW index computed on connectivity networks inferred 
from mannequin data. The findings were reported in Fig.2. 
In particular the statistical analysis revealed small-world 
properties in the investigated networks for both 
methodologies and both edges density. Higher values for 
Fixed Edge Density in respect to Shuffling procedure 
resulted in Case 2 as confirmed by Tukey’s pairwise 
comparisons. 

In order to understand if the small-world properties of 
the investigated networks depend on the correlations 
between neighboring electrodes or from the position of the 
reference, we move the analysis from scalp to cortical level. 
In particular we used an advanced methodology for 
electrical sources reconstruction, the Weighted Minimum 
Norm, to project the data acquired at scalp level from the 
mannequin head to the space of sources [13]. This process 
allows to delete all the correlations due to volume 
conduction effect. The corresponding cortical waveforms, 
achieved for regions of interests selected by chance, were 
subjected to the same analysis of scalp signals. Then in order 
to compare the two conditions, we performed an ANOVA 
considering as dependent variable the SW index and as 
within main factors the level at which the analysis was 
executed (LEVEL: scalp or cortex) and the edge density 
(EDGE: Case 1 and Case 2). 

Results of the statistical analysis revealed influence of 
the main factors LEVEL (p<0.00001, F=98.24), EDGE 
(p<0.00001, F=31.04) and LEVEL x EDGE (p<0.00001, 
F=55.66) on the SW index computed on connectivity 
networks inferred from mannequin data. The adjacency 
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matrix was extracted by means of shuffling procedure. In 
Fig.3 we reported the correspondent results. In particular we 
showed the plot of means with respect to the interaction 
between LEVEL and EDGE factors. Results reported in 
Fig.3 showed how the SW index computed on networks 
inferred from data reconstructed at cortical level remained 
below 1 for the two edges density, confirming the hypothesis 
that the small-world properties at scalp level are mainly 
associated to correlations between neighboring electrodes.  

IV. DISCUSSION 

In the present study we made a comparison between one 
of the methods extensively used in graph theory applications 
for extracting adjacency matrices from the connectivity 
patterns (i.e. the method based on fixing the edge density) 
and the shuffling procedure in order to describe the effects 
of the modalities for adjacency matrix extraction on the 
“small world” properties of the network.  

The results achieved on simulated data revealed that the 
use of the empirical criterion leads to erroneous definition of 
small-world properties of the network, independently from 
the edge density chosen. In fact, the simulated data, being 
uncorrelated, should produce connectivity patterns without 
any topological properties of small-worldness. This means 
that the shuffling procedure doesn’t just preserve the 
strongest connections as the fixed edge density criterion and 
thus the significance of a link is not merely related to its 
strength. For this reason a statistical validation, combined 
with multiple comparisons adjustments, is necessary in order 
to extract graph measures able to describe the real properties 
of the considered network. 

The results achieved on mannequin data showed small-
world properties of the networks extracted by applying both 
methodologies. In this case, the shuffling procedure couldn’t 
prevent the description of mannequin networks as small 
world networks. This effect could be explained with the 
existence of real correlations between electrodes, which can 
occur in real EEG data, due to volume conduction effect and 
to the location of the reference [14]. Such hypothesis is 
confirmed by the fact that the application of shuffling 
approach on data reconstructed at cortical level led to a 
correct definition of topological properties of investigated 
networks (no small-world properties). In fact the procedure 
used for reconstructing cortical sources worked as spatial 
high-pass filter, deleting all the correlations between 
neighboring electrodes. Thus SW index cannot be considered 
as an absolute measure, because its value contains some of 
the real correlations due to neighboring electrodes. At scalp 
level only variations of this measure between two conditions 
within the same subject, or between two subjects in the same 
conditions can be computed, in order to discard all the 
effects due to the position of the electrodes on the scalp. 

V. CONCLUSION 
All the results reported in the present paper highlighted 

the necessity to use a validation process for extracting the 
threshold to be used for adjacency matrix extraction. In fact 

this approach is necessary to avoid erroneous definition of 
topological properties of the investigated networks. 

Moreover a new definition of the concept of small-
worldness is provided due to its strong dependence from 
correlations between neighboring electrodes. At scalp level 
it could be used only for describing variations between two 
conditions. As absolute value, SW index can be used only 
after removing the source of correlation. 
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