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Abstract— High density contact electrogram data of atrial
fibrillation (AF) contain detailed information on recurring
activation patterns and dominant signaling pathways. Current
methods to analyze these patterns and pathways rely mainly on
supervised atrial deflection annotation and wave reconstruction.
In this study, we developed a new algorithm to automatically
identify recurring patterns and dominant pathways without
the need for annotation. A sparse multivariate autoregression
model was estimated on short segments of synchronous unipolar
electrograms to extract the dominant interactions between
electrograms at different recording electrodes. Sparsity of the
electrode interaction matrices at several time-lags was maxi-
mized by applying a distance-weighted basis pursuit algorithm.
Dominant interactions were identified by computing the mean
interaction matrix over a number of consecutive time segments.
The algorithm was evaluated on high-density recordings with
234 electrodes and 2.4mm electrode spacing in the left and
right atrial free wall of a goat model of AF. The method was
able to identify relevant patterns of AF, including wave trains,
repetitive breakthrough waves and rotating wave activity.

I. INTRODUCTION

The identification of recurring patterns in high-density
recordings of atrial fibrillation (AF) provides valuable insight
in the underlying mechanisms that determine the complexity
of the AF substrate. Response to treatment of AF, whether
this is for instance ablation therapy or pharmacological inter-
vention, is dependent on this AF substrate complexity. High-
density contact mapping of AF may give a good first visual
impression of recurring wavefront patterns, but detailed sub-
strate analysis requires extensive signal processing of atrial
electrograms, atrial deflection detection and fibrillation wave
reconstruction. We hypothesize that recurring patterns and
signaling pathways can be identified using electrograms and
electrode topology alone, employing a sparse multivariate
autoregression (MVAR) modeling approach. A recent study
showed that a similar approach can lead to meaningful
results when identifying propagation patterns between sev-
eral intracardiac recording sites using bipolar electrograms
from a basket catheter [1]. In contrast to this approach, we
intend to identify interactions between unipolar electrograms
within a short timeframe to account for the dynamical
nature of complex atrial fibrillation patterns. Furthermore,
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the spatial resolution of these unipolar recordings is higher
(interelectrode distance 2.4mm) than in bipolar electrogram
acquisition devices such as a basket catheter.

The MVAR model used in our approach allows us to
choose 1) the maximum time-delay (the model order), 2)
some dead time, and 3) model sparsity. The model order
has to be chosen in such a way that sufficient but not
too much past electrical activity is used to explain current
activity. Including dead time is necessary to prevent (almost)
simultaneous activations in a wavefront to be used to explain
and detect spatial interaction in the direction of wave prop-
agation. Sparsity is used to highlight dominant interactions.
We are interested in spatial interactions, which is why we
use an averaging procedure over time, within a suitably short
window to prevent too many different wavefronts to cancel
each other out. A key issue here is that otherwise unrelated
atrial complexes often have similar morphology, so that any
method that maximizes sparsity is prone to identify dominant
interactions between unrelated locations. To address this
issue we developed a distance-weighted adaptation of the
basis pursuit algorithm [2] that maximizes the sparsity of the
MVAR interaction matrices, while also regularizing sparsity
based on interelectrode distance. The algorithm was then
applied to a set of recordings in a goat model of AF that
contained multiple recurrent wavefront propagation patterns.

II. METHODS

A. Sparse multivariate autoregression model

The MVAR model of order P for a set of
N synchronous recorded electrograms x[k] =
[x1[k], x2[k], . . . , xN [k]]

T
, k = 1, 2, . . . ,M with a dead

time δ, can be formulated as

x[k] =

δ+P−1∑
τ=δ

Aτx[k − τ ] + w[k], (1)

where each Aτ is the N × N matrix with entries aij(τ)
quantifying an interaction from xj [k−τ ] to xi[k]. The vector
w[k] = [w1[k], w2[k], . . . , wN [k]] is a multivariate white
noise process. The model in (1) can be written in matrix
form:

X = ΦΘ +W, (2)
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where

X = [x[δ + P ],x[δ + P + 1], . . . ,x[M ]]
T

Φ =

 x[P ] · · · x[M − δ]
...

. . .
...

x[1] · · · x[M − (δ + P − 1)]


T

Θ = [Aδ,Aδ+1, . . . ,Aδ+P−1]
T

W = [w[δ + P ],w[δ + P + 1], . . . ,w[M ]]
T
.

For a set of electrograms with M ≥ NP + δ and Φ with
full column rank NP , the unique least squares (LS) solution
can be derived for each column θ(i) of Θ separately

θ
(i)
LS =

(
ΦTΦ

)−1
ΦTx(i), (3)

where x(i) denotes column i of X . In this study we focus on
short time-segments of electrograms, which typically causes
the number (NP ) of parameters that needs to be estimated
for each column θ(i) to be much larger than the available
number of observations M . If the matrix Φ has rank r <
NP , which necessarily happens if M−δ−P+1 < NP , then
there is no unique LS solution, but an optimal least squares
solution space of dimension NP −r. This equivalence space
with respect to the LS criterion can be exploited to maximize
the sparsity of the parameter vector θ(i). We apply a basis
pursuit algorithm to find a parameter vector θ(i) with minimal
L1-norm, while retaining the optimal least squares fit:

min
θ(i)
‖θ(i)‖1 subject to Φθ(i) = Φθ

(i)
LS . (4)

Minimizing the L1-norm has been shown to produce a
solution with maximum sparsity under certain conditions [3],
even in the presence of noise [4]. Note that the right-hand
side vector in the constraint in (4) is a unique vector, formed
by the the orthogonal projection of x(i) on the column space
of Φ which does not depend on the choice of a solution in
the equivalence space for the LS criterion.

An N×N spatiotemporal weight matrix Cτ can be defined
and incorporated into the criterion function in (4) which
allows to regularize sparsity at corresponding entries of Aτ .
Define C as

C = [Cδ, Cδ+1, . . . , Cδ+P−1]
T
, (5)

and C(i) as column i of C. The regularized problem can
now be written as

min
θ(i)

(C(i))T
[
|θ(i)1 |, |θ

(i)
2 |, . . . , |θ

(i)
NP |

]T
subject to Φθ(i) = Φθ

(i)
LS , (6)

The problem in (6) can be solved using linear programming
by bringing it into standard form:

min
θ+,θ−

(C(i))T
(
θ+ + θ−

)
s.t. Φ(θ+ − θ−) = Φθ

(i)
LS

θ+i , θ
−
i ≥ 0 i = 1, 2, . . . , NP, (7)

where θ(i) = θ+−θ−. The resulting column vectors θ̃(i) with
minimal L1-norm are joined to form the estimated matrix Θ̃.
From this matrix the estimated interaction matrices Ãτ can
be constructed. To compute a solution θ

(i)
LS which features

in (7), several approaches are possible. One is to employ
the data directly as indicated in the definitions of Φ and X
above and to use classical techniques from linear algebra
such as QR-decomposition or an SVD-approach. However,
the matrix ΦTΦ in the LS formula (3) is known to have a
near block-Toeplitz structure which admits highly efficient
recursive inversion. This is the basis for the well-known
Levinson algorithm and its multivariate generalizations such
as the Whittle-Wiggins-Robinson algorithm, see [6], which
allow for the computation of an LS solution recursively in
the order P of the MVAR model. This may speed up the
estimation process, and it also allows one to use information
theoretic criteria to select an appropriate value for P .

B. Dominant pathway identification

The goal of the sparse MVAR model estimation is to
identify the dominant interactions between synchronous elec-
trograms within a relatively short time interval of length
M , typically shorter than one AF cycle length. A set of
electrograms of duration > M is analyzed by extracting L
consecutive intervals of length M with overlap M/2 and
estimating the sparse MVAR model for each of the intervals.
The estimated MVAR model matrices Ãτ are then analyzed
to extract information on recurring interaction patterns. We
will focus on the regularization of spatial sparsity only and
define the spatiotemporal weight matrix Cτ as

Cτ,ij = exp

(
dij
λ

)
, τ = δ, . . . , δ + P − 1, (8)

where dij is the euclidean distance between electrodes i and
j in millimeters and λ is a decay factor. The model coeffi-
cients are indicators of the strength of the interaction between
two electrodes at a certain time delay, based on electrogram
morphology. The mean interaction aijfrom electrode j to i
is defined as

aij =

∑L
l=1

∑δ+P−1
τ=δ Ã(l)τ,ij
PL

, (9)

where Ã(l)τ denotes the interaction matrix Ãτ estimated on
the interval l. Pathway maps are constructed from the mean
electrode interaction matrix A.

C. High-density contact mapping

A subset of the mapping data presented in [5] was used
for analysis. In short, goats were instrumented with an atrial
endocardial pacemaker lead and a burst pacemaker. AF was
maintained for 3 weeks (short-term AF [ST], n=10) or 6
months (long-term AF [LT], n=7). In an open-chest follow-
up experiment, electrograms during AF were recorded from
the left atrial (LA) and right atrial (RA) free walls using
a round, high-density electrode array of 4cm in diameter,
consisting of 234 unipolar recording electrodes with an in-
terelectrode distance of 2.4mm (sampling rate 1kHz). Three
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Fig. 1. Isochrone contour maps depicting a single occurrence of three recurring patterns of AF (left) and graphs showing estimated dominant electrode
interactions (right). The asterisk (*) marks the starting point of a wavefront in the contour map. The wavefront trajectories are indicated by the bold directed
lines. The directed electrode interaction graphs are constructed by drawing a line between electrodes where dominant interactions occur. The strength of
the interaction is indicated by a grayscale and width, ranging from black and thick (strong) to white and thin (weak).
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recordings were chosen to investigate the relevance of the
sparse multivariate regression approach: 1) an ST goat with
a large peripheral wavefront, entering the mapping array at
the same location and recurring with the same pattern for
several seconds, 2) an ST goat with a recurring breakthrough
wavefront pattern, and 3) an ST goat with a recurring rotating
wavefront pattern.

III. RESULTS

The MVAR model was estimated on 3 second recordings
segmented into consecutive 100ms intervals (M = 100)
with 50ms overlap. Model delay and order were set at
δ = 1 and P = 11, corresponding to 1ms and 11ms
respectively. These values are based on the assumption
that local conduction velocity between two horizontally or
vertically adjacent electrodes can be as slow as 0.2mm/ms
(2.4/0.2 = 12ms) and should not be faster than 1.5mm/ms
(2.4/1.5 = 1.6ms). The value of the decay factor λ was
set at 10mm. Dominant electrode interaction graphs were
reconstructed by normalizing the outgoing mean interactions
for each electrode to the interval [0, 1] and selecting only
interactions with a normalized value higher than 0.75. Fig.
1 shows three examples of identified recurring wave propa-
gation patterns.

1) Peripheral wave train: The top isochrone map and
interaction graph in Fig. 1 show the analysis of a recurring
pattern of a peripheral wavefront entering from the left,
moving from left to right and leaving the mapping area
at the right. The contour map on the left shows one such
wave, with higher conduction velocity at the top and bottom
of the mapping array and slower conduction in the middle.
The direction of the wavefront pattern is captured by the
dominant interaction graph, where the top and bottom of
the mapping array show clear rightward conduction patterns
while the pattern in the middle is more diverse. Surprisingly
the points where the wavefront enters the mapping area on
the left are identified as sinks with many dominant incoming
interactions. This can be explained by the observation that
at an electrode where a wavefront originates there is no pre-
ceding activation at the surrounding electrodes, but they do
contain later activations that still correlate with the activation
at the originating electrode. At points where a wavefront has
just passed, there will be a number of correlating similar
activations before and after the front, but for a point where
waves originate or come in, only correlations after the front
are possible. When the two sides (before and after) are
present, the resulting dominant interaction is likely not as
strong as when only one side is present. Therefore at sources
(just as at sinks) dominant interactions will more easily
be pointed towards them. In this case the auto-interaction
coefficient aii can provide additional information.

2) Repetitive breakthrough wave: The middle map and
graph in Fig. 1 show a repetitive breakthrough wave pattern,
where a wavefront originates from a deeper layer of the
atrium. The activation breaks through in the right upper
corner of the mapping array and subsequently shows radial

spread of activation, leaving the mapping array at the left,
bottom and right side. The dominant interaction graph again
captures this breakthrough pattern. The upper right part of
the interaction graph shows a more complex pattern, again
with several electrodes that act as sinks. These electrodes are
the locations where most breakthrough waves tend to enter
the mapping area.

3) Rotating wave: The bottom map and graph in Fig. 1
depict the pattern of a rotating wave that enters the mapping
area in the lower right, moves upward and then turns left.
One part of the wavefront leaves the mapping area on the
upper left, the other part keeps on turning anticlockwise to
return to the point where the wavefront entered the area. The
dominant interaction graph clearly shows the first upward
movement of the wavefront, the left turn and the leftward exit
of the wavefront. The second part of the wavefront is less
clear, although several downward paths can be distinguished
in the middle and lower part of the mapping area. This can
be explained by the fact that the second part of the wavefront
is not as recurrent as the first part.

IV. DISCUSSION AND CONCLUSIONS

The three examples illustrate the identification of recur-
rent wave propagation patterns using a sparse multivariate
regression model. Without the need for annotation and in-
cluding only a limited amount of underlying assumptions,
the developed method is able to capture the relevant domi-
nant interactions between electrograms located at different
recording locations. The distance-weighted version of the
basis pursuit algorithm is a fast and promising tool to identify
interactions within a short timeframe. The constructed dom-
inant interaction graph can be further analyzed using graph
theoretical algorithms to identify sources and sinks related
to wave propagation, to compute maximum flow between
different locations in the mapping array and to quantify graph
connectivity. In a clinical setting a real-time implementation
of the pattern identification algorithm might be used to guide
the ablation process by identification of specific conduction
patterns as ablation targets and for verification of conduction
block.
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