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Abstract— Obstructive sleep apnea (OSA) is a common disor-
der due to recurrent collapse of the upper airway (UA) during
sleep that increases the risk for several cardiovascular diseases.
Recently, we showed that nocturnal fluid accumulation in the
neck can narrow the UA and predispose to OSA. Our goal is
to develop non-invasive methods to study the pathogenesis of
OSA and the factors that increase the risks of developing it.
Respiratory sound analysis is a simple and non-invasive way
to study variations in the properties of the UA. In this study
we examine whether such analysis can be used to estimate the
amount of neck fluid volume and whether fluid accumulation
in the neck alters the properties of these sounds.

Our acoustic features include estimates of formants, pitch,
energy, duration, zero crossing rate, average power, Mel fre-
quency power, Mel cepstral coefficients, skewness, and kurtosis
across segments of sleep. Our results show that while all acoustic
features vary significantly among subjects, only the variations in
respiratory sound energy, power, duration, pitch, and formants
varied significantly over time. Decreases in energy and power
over time accompany increases in neck fluid volume which may
indicate narrowing of UA and consequently an increased risk of
OSA. Finally, simple discriminant analysis was used to estimate
broad classes of neck fluid volume from acoustic features with
an accuracy of 75%. These results suggest that acoustic analysis
of respiratory sounds might be used to assess the role of fluid
accumulation in the neck on the pathogenesis of OSA.

I. INTRODUCTION

Obstructive sleep apnea (OSA) is a common disorder

that increases cardiovascular morbidity and mortality [1, 2].

Although OSA occurs due to the partial or complete collapse

of the upper airway (UA) during sleep, the underlying mech-

anisms for this collapse are not fully understood. Recently,

we showed that sedentary living causes fluid accumulation

in the legs during the day some of which can be displaced

rostrally into the neck when moving from the upright to the

recumbent position at bedtime. Therefore, developing non-

invasive techniques to monitor fluid accumulation in the neck

might improve our understanding of the pathogenesis of OSA

and how to implement treatments to counteract this effect.

Overnight fluid shif from the legs into the neck could cause

distension of the neck veins and/or edema of the peripha-
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ryngeal soft tissue and facilitate UA obstruction. In previous

studies, we applied lower-body positive pressure (LBPP) via

inflatable trousers to awake individuals to simulate nocturnal

fluid displacement out of the legs. We demonstrated that

fluid shift out of the legs to the neck narrowed the UA and

increased its resistance to airflow in healthy non-obese sub-

jects [3]. Fluid displacement also increased UA collapsibility

in healthy men while awake [4]. We have also shown that

during the night, the volume of fluid displaced from the legs

is strongly related to the degree of overnight increase in neck

circumference and severity of OSA in non-obese otherwise

healthy men, men with heart failure, end-stage renal disease,

and patients with hypertension [5-7].

Respiratory sounds analysis is a simple and non–invasive

technique to study the pathophysiology of the UA and has

been widely used for investigation of UA obstruction [8-

13]. In previous studies, we showed that tracheal sound

analysis can reflect variations in the anatomy and physiology

of the UA in individuals with or without OSA [14, 15].

Furthermore, we applied LBPP to healthy awake individuals

and simultaneously recorded UA resistance and respiratory

sounds with a microphone in front of the nose. Our results

demonstrated that variations in UA resistance in association

with fluid accumulation in the neck change acoustic proper-

ties of respiratory sounds such as formants and energy [16].

In this study we recorded tracheal respiratory sounds

and neck fluid volume in healthy awake individuals while

lying down in the supine position. The goal of this study

is to examine the variations in tracheal sound features in

relation to fluid accumulation in the neck and to investigate

whether tracheal sound analysis can be used to monitor fluid

accumulation in the neck.

II. METHOD

A. Data

Data for this study were recorded from 10 healthy awake

subjects (5 men, 5 women) aged 33.2 ± 8.5, with a mean

body mass index (BMI) of 23.9 ± 4.0, and no history

of sleep or respiratory disorders. Subjects were recruited

by advertisement with no restriction on sex, age or BMI.

Subjects lay supine for 90 minutes while neck fluid volume

(NFV), leg fluid volume (LFV) and tracheal respiratory

sounds were recorded simultaneously. However in this study,

we only investigated the relationship between NFV and

tracheal respiratory sound. NFV was recorded using bio-

electrical impedance which is a non-invasive, well validated,

and highly reproducible technique to measure fluid volume

of tissues [17]. In this method, two electrodes inject high
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frequency (50 kHz), low amplitude (400 µA) current into

the tissues and two sensing electrodes measure bioelectrical

impedance which is inversely related to the amount of fluid

in the tissue. For NFV, sensing electrodes were placed on

the right side of the neck: one below the right ear and one

at the base of the neck; injecting electrodes were placed one

inch away from the sensing electrodes. Tracheal respiratory

sounds were recorded by a Sony microphone embedded in a

chamber (diameter of 6 mm) and attached to the suprasternal

notch of the subject with double-sided tape. Tracheal sounds

were low-pass filtered with the cut-off frequency of 5 kHz.

Both NFV and tracheal sounds were digitized and recorded

simultaneously with a sampling rate of 12.5 kHz (MP150,

Biopac Systems).

B. Feature Extraction

Tracheal sound was bandpass filtered in the frequency

range of [30 − 3000]Hz to remove the low- and high-

frequency noises, such as motion artifacts. For every sub-

ject, 4 segments of data (2 minutes each) at the beginning

(T0), between 20-30 minutes (T30), between 50-60 minutes

(T60), and at the end of recording (T90) were selected by

an expert and the inspiratory breath cycles void of noise

were marked manually. For each inspiratory breath cycle,

several features in the temporal and spectral domains were

extracted. Temporal features include duration (Dur), average

energy (Eng), skewness (Skew), kurtosis (Kurt), the ratio

between voiced and unvoiced segments of breath sound

(RV UV ), and zero crossing rate (ZCR, normalized by the

duration) of the inspiratory breath cycle. The spectral features

include average power (PAvg) in various frequency bands

([30-100] Hz, [100-450] Hz, [450-600] Hz, [600-800] Hz,

[800-1200] Hz, [1200-2000] Hz and [2000-3000] Hz), pitch

(Pitch), Mel-Power (MelPwr), Mel-Cepstrum coefficients

(MelCeps), and the first three formants (F1, F2, F3) of the

inspiratory breath cycle.

C. Fluid Volume Estimation

Bioelectrical impedance of the tissue is inversely related

to the amount of fluid in tissue. In this study we con-

tinuously recorded impedance (IN) and phase (θ) of the

neck’s bioelectrical impedance and calculated neck resistance

(RN = IN × cos(θ)) and reactance (XN = IN × sin(θ)).
NFV was estimated as [18]:

NFV = ρL2/RN , (1)

where ρ is the blood’s resistivity, L is neck’s length in cm

and RN is neck’s resistance in Ω.

D. Statistical Data Analysis

In order to determine the effects of time, of individ-

ual subject characteristics, and of the interaction between

these variables, we perform multi-way analyses of variance

(ANOVAs) on each acoustic feature. We then perform Pear-

son correlation analysis between the bioelectrical impedance

driven variables (IN , θ, RN , XN and NFV) and the acoustic

variables to measure relationships between variations in the

NFV and acoustic features of tracheal respiratory sounds.

We then apply several regression analyses to investigate how

well acoustic features can predict variations in NFV. This

includes multilinear regression of the observations of NFV

given the acoustic data reduced to two dimensions according

to the first two principal components, plus an interaction

term between these dimensions (i.e., their pairwise product).

The first two principal components of the acoustic data

account for 90.52% and 5.40% of the variance, respectively,

as determined by the eigenvalues of the covariance matrix

of the acoustics.

In the last analysis, we examine five standard discriminant

functions on randomized partitions of the data using 10-fold

cross validation. The five discriminant functions are:

linear The linear method fits a multivariate Gaussian to

each class, with a pooled estimate of covariance.

diag. The diagonal method fits a multivariate Gaussian

to each class, with a diagonal covariance matrix

estimate.

quad. The quadratic method fits multivariate Gaussians

with covariance estimates stratified by class.

dquadThe diagonal quadratic method is similar to the

quadratic method, but with a diagonal covariance

matrix estimate.

mahal.Uses Mahalanobis distances with stratified covari-

ance estimates.

In all cases, we split the NFV data into three classes

whose boundaries are determined empirically and whose

prior probabilities are learned automatically during training.

The three classes used in discriminant analysis are NFV

values below 350 ml, above 450 ml, and between these two

boundaries.

III. RESULTS

Figure 1 shows variations in leg and neck impedances

and fluid volumes over time for a typical subject. As seen

in Fig. 1, the leg’s impedance (Fig. 1-a) increases asymp-

totically over time as a result of fluid moving out of the

leg (Fig. 1-b). Consequently, neck impedance decreases over

time (Fig. 1-c) which indicates that there is more fluid

accumulating in the neck (Fig. 1-d). Similar patterns were

observed in all subjects which confirms that some of the fluid

displaced from the legs shifts into the neck while supine.

Table I shows the F -statistics for each acoustic variable

according to variance among individuals, variance due to

time (T0, T30, T60, and T90), and to the interaction between

these two variables. Kolmogorov-Smirnov goodness-of-fit

tests of normality were performed on each variable in Table

I independently; each variable is normally distributed with

p < 0.001. There is a significant amount of variance among

subjects across all acoustic variables (p < 0.05) that may be

due to the high variability of UA anatomy and physiology

among individuals. RV UV , Eng, Dur, ZCR, PAvg , MelPwr,

and formants (F1, F3) of tracheal breath sounds vary sig-

nificantly over time. The interactions between subjects and

time are significant for all features (p < 0.001) except for

skewness and kurtosis.
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Fig. 1. Variations in leg and neck impedances and fluid volumes over
time for a typical subject: a) leg impedance, b) leg fluid volume, c) neck
impedance and d) neck fluid volume.

Subject Time Interaction
Feature F (9) p F (3) p F (27) p

Pitch 52.94 < 0.001 1.70 0.17 5.33 < 0.001
RV UV 93.93 < 0.001 23.34 < 0.001 14.64 < 0.001

Eng 126.06 < 0.001 4.26 < 0.01 4.96 < 0.001
Dur 69.88 < 0.001 25.98 < 0.001 12.46 < 0.001

ZCR 128.79 < 0.001 44.72 < 0.001 18.78 < 0.001
PAvg 203.34 < 0.001 6.60 < 0.001 8.96 < 0.001

MelPwr 68.03 < 0.001 9.67 < 0.001 11.92 < 0.001
MelCeps 65.49 < 0.001 1.10 0.35 12.17 < 0.001

Skew 2.19 < 0.05 0.37 0.78 1.08 0.36
Kurt 6.19 < 0.001 0.34 0.80 1.14 0.29

F1 47.49 < 0.001 2.72 < 0.05 12.39 < 0.001
F2 143.49 < 0.001 1.74 0.16 11.60 < 0.001
F3 191.72 < 0.001 5.05 < 0.005 11.16 < 0.001

TABLE I

RESULTS OF ANOVA ON EACH ACOUSTIC FEATURE. F -STATISTICS AND

ASSOCIATED p VALUES ARE SHOWN ACCORDING TO VARIANCES DUE TO

SUBJECT, TIME, AND THE INTERACTION BETWEEN THESE VARIABLES.

Of the acoustic features that vary significantly with time,

RV UV , Eng, ZCR, PAvg and MelPwr decreased after 90

minutes. These results indicate that the overall energy of

respiratory breath sounds decrease over time. Since energy

of respiratory breath sounds is related to the respiratory flow

rate, the results suggest a decrease in respiratory flow rate

over time. On the other hand, the duration of respiratory

cycle increases over time which could be a mechanism to

increase the total breathing volume.

Table II shows the Pearson correlation coefficients, r,
between the bio-impedance/fluid variables and the acous-

tic variables. While there are no strong correlations (i.e.,

|r| > 0.5), neck impedance (IN , θ and resistance RN ) have

medium correlations (i.e., 0.1 < |r| ≤ 0.5) with each of F2,

F3, and Eng acoustic measures, as NFV has with ZCR. Each

of these 10 correlations are significant at p < 0.00001.

Since the aim is to use these acoustic measures to predict

NFV, this analysis suggests that ZCR could be a useful fea-

ture for this task. Although here we assume an independence

between the acoustic variables, that will not be the case

during automated classification where acoustic measures will

be combined. Furthermore, the relationship between several

acoustic variables and NFV were not significant, including

RV UV (p = 0.225), Eng (p = 0.518), Dur (p = 0.354),

r IN θ RN XN NFV

F1 −0.174 0.269 −0.181 0.084 0.116
F2 −0.341 0.393 −0.348 −0.030 0.243
F3 −0.356 0.418 −0.364 −0.012 0.185

Pitch 0.174 −0.197 0.178 0.004 −0.093
RV UV 0.091 −0.100 0.094 −0.026 0.044

Eng 0.357 −0.318 0.360 0.125 −0.0262
Dur 0.181 −0.211 0.185 −0.005 −0.034

ZCR −0.243 0.297 −0.247 −0.072 0.389

PAvg 0.255 −0.162 0.256 0.130 0.104
MelPwr 0.168 −0.029 0.165 0.161 0.233

MelCeps 0.151 −0.126 0.151 0.122 −0.030
Skew −0.044 0.024 −0.043 −0.043 −0.025
Kurt 0.140 −0.124 0.141 0.061 0.023

TABLE II

PEARSON CORRELATION COEFFICIENTS, r, BETWEEN THE

BIO-IMPEDANCE/FLUID VARIABLES AND THE ACOUSTIC VARIABLES.

Medium CORRELATIONS ARE IN bold.
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Fig. 2. Multilinear regression of NFV given the associated acoustic data
reduced according to the first and second principal components.

MelCeps (p = 0.413), Skew (p = 0.503), and Kurt (p =
0.531), suggesting at least that more data are required before

the utility of these independent variables can be determined.

Multilinear regression of NFV given all acoustic predictor

variables results in an R2 goodness-of-fit statistic of 0.4221,
and an F -statistic of 41.4047 (p < 0.00001). On the other

hand, although the first two principal components (PC1 and

PC2) represent more than 95% of variations in the data space,

the restricted multilinear regression between NFV and PC1

and PC2 gives an R2 goodness-of-fit statistic of 0.0447 , and

an F -statistic of 11.6587 (p < 0.00001). The insufficiency

of this reduced space in predicting NFV can be visualized

in Figure 2 where the especially high volumes of neck fluid

are not adequately predicted.

The results of discriminant analysis are shown in Table

III according to the average (µ) accuracy across folds, along

with the variance (σ). All approaches are significantly better

than a uniform probability baseline at the 99.9% level of

2926



Accuracy
Model type µ (%) σ

linear 75.3 0.1314
diag. 64.5 0.2457
quad. 68.9 0.1700

dquad. 50.3 0.2807
mahal. 77.6 0.2086

TABLE III

AVERAGE (µ) AND STANDARD DEVIATION (σ) OF THE ACCURACY OF

DISCRIMINANT ANALYSIS FOR ESTIMATING NFV FROM ACOUSTIC

VARIABLES.

confidence.

IV. DISCUSSION

In this study, we investigated the application of respiratory

sound analysis to monitor fluid accumulation in the UA.

We recorded tracheal respiratory sounds and bio-electric

impedance of the neck over time. Our results showed that

with an increase in NFV, several acoustic features associated

with tracheal sound energy decreased over time. One possible

explanation for this phenomenon is that it may represent

narrowing and partial obstruction of the UA over time as a

result of fluid accumulation in the neck that decreases upper

airway patency, airflow and sound intensity. Interestingly, the

duration of the respiratory cycle increases over time which

could be a mechanism to compensate for the decrease in

breathing flow rate or increased airflow resistance, and to

adjust the total breathing volume.

The results of the present study provide a reasonable

estimate of NFV from tracheal sound analysis (accuracy of

75%). We are currently investigating non-linear regression

algorithms, additional features of tracheal sound, and alter-

native more sophisticated classification algorithms including

various discriminative training methods to improve estima-

tion accuracy. Also, considering the high variation of acoustic

features among subjects, we intend to examine adaptive

algorithms that can modify the statistical parameters of a

general population model to be more attuned to individual

characteristics, such as maximum likelihood linear regression

and maximum a posteriori estimation. These results can be

used to develop simple and non-invasive acoustic techniques

to monitor fluid accumulation in the neck and its role on the

pathogenesis of OSA in a wide range of patients, specially

those with fluid retaining conditions.
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