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Abstract – The variations in the electrooculogram (EOG) 

caused by eye motion are roughly proportional to the 

instantaneous horizontal and vertical glance angle. This linear 

correlation is exploited in systems using EOG to control 

software, and hardware such as artificial limbs, or wheelchairs. 

In these approaches, the drift in the electronics is commonly 

compensated by applying a high-pass filter. Consequently, the 

remaining EOG signal contains only blinks and rapid eye 

movement. However, repeating these eye gestures voluntarily is 

exhausting. This paper presents an algorithm that estimates the 

instantaneous glance of a subject from EEG signals. The 

subject is seated in front of a computer screen to control an 

application by glance. Because the visual field of interest, in this 

setting, is the limited area of the monitor, we can compensate 

the error in the glance estimate by detecting outliers. Because 

no high-pass filter is applied to the data, the user controls the 

applications by eye glance, which is comfortable and can be 

performed over extended periods of time. The numerical 

evaluation of the experiments with 12 volunteers, and video 

recordings of EOG controlled applications demonstrate the 

accuracy of our algorithm. 

I. INTRODUCTION 

The front and the back of the human eye sustain an electric 

potential difference. The potentials propagate to the cheeks, 

forehead, and scalp, where electrooculogram (EOG), or 

electroencephalogram (EEG) electrodes can pick them up. A 

reorientation of the eyes generally causes a change in the 

voltages measured by the electrodes. 

Whereas the signal patterns originating from eye 

movement are undesired in applications that monitor brain 

activity, the patterns constitute a reliable means of control in 

an EOG based human-machine interface. A person without 

correct limb and facial muscular control might still have the 

ability to gesture through eye movement and blinks. 

Diseases such as amyotrophic lateral sclerosis, or certain 

forms of quadriplegic clinical conditions (spinal cord injury, 

locked-in syndrome) render patients with as little forms of 

expression as blinking and orienting the eyes. Automating 

the interpretation of these gestures can lead to a more 

autonomous lifestyle and increased quality of life [1]. 

Researchers have been particularly successful at detecting 

eye blinks in the EOG, and classifying oscillatory eye 

movements. Consequently, these eye gestures would operate 

a wheelchair [1], a robot [2], or software for spelling words, 

and express needs in a home environment [3]. In the future, 

psychological research, gaming electronics, consumer 
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electronics, and the long term examination of eye 

movements might result in more applications [4]. Compared 

to video-based eye trackers, EOG is independent of lighting 

conditions and also works when the eye lids are closed [5]. 

Besides, EOG is used to remove ocular artifacts from EEG 

to unveil brain activity [6]. The technique presented in our 

paper does not categorize as brain computer interface as the 

control is not based on the classification of brain activity. 

 Common within the literature on EOG-based control is 

the application of a high-pass filter, with cutoff at a 

frequency between 0.05 and 0.2 Hz. The high-pass filter 

removes the long-term drift inherent in all channels that are 

connected to the scalp [7]. Over short periods of time, 

typically less than ten seconds, the drift is negligible given 

that the subject is at rest. During this phase, the variation in 

EOG is nearly co-linear to the glance angle within the 

customary field of view [8], thus linear regression 

techniques can reliably transforms EOG to glance direction. 

However, since the EOG-based control is required to operate 

for extended periods of time, researchers have relied on the 

classification of oscillatory eye movements from the high-

pass filtered data. One exception is [2], who performs 

periodic recalibrations: To reset the positional control, the 

user ”fixates on a direct forward gaze for approximately 1/2 

second, then blinks.” Another approach is presented in [9], 

that fits the measured velocity profile of the EEG during a 

saccade to the average velocity profile during a standard 

saccade in order to integrate the eye rate over time to the 

glance direction. 

Our new approach is motivated by two observations:  

 The majority of EOG-controlled applications are 

displayed on a computer screen to provide feedback 

with the shortest amount of delay possible. When the 

glance is falsely estimated to lie outside of the screen 

area, a simple translation can account for the offset. 

Drift is corrected on the fly. 

 Activities such as reading and watching a movie are 

comfortably performed over extended periods of 

time, during which the glance targets the changing 

region of interest, while blinks occur infrequently and 

involuntarily. Any EOG-based application that 

creates the incentive for the same behavioural pattern 

is likely to have low fatiguing effect. Until now, most 

applications are based on voluntary blinks and 

oscillation of glance. 

The paper is organized as follows: We advocate the use of 

a linear model to estimate eye orientation from raw EEG 

data. No filtering is required. The subject- and session- 

specific model is obtained from a short calibration 

procedure. In order to accurately estimate the glance over 

extended periods of time on a computer screen, we introduce 
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a drift compensation that translates outliers back onto the 

screen. A simple computation reveals that our algorithm is 

potentially invariant under arbitrary shift of baselines. 

Finally, we provide empirical data supporting the 

performance of the eye glance estimation and report on two 

conventional applications that were developed using this 

approach. 

II. METHOD 

 
Fig. 1: Linear correlation coefficients of channel measurements 

with horizontal (left) and vertical (right) glance direction averaged 

for 12 subjects as presented in [10]. The reference electrode is Oz 

at the back of the head. Values of ±1 would indicate a perfect linear 

correlation. The black dots indicate the location of electrodes 

between which the values are interpolated. 

A. Model 

Voltage gradients measured from skin around the eyes 

exhibit a nearly perfect linear correlation with the glance 

ranging within ±45◦ for left-right and within ±30◦ for up-

down direction [8]. For electrodes further away, located on 

the scalp, the correlation coefficients were studied in [10] 

and are reproduced in Figure 1. For instance, electrodes on 

the temples correlate significantly with the left-right glance, 

whereas channels located along the centreline of the scalp 

exhibit a significant correlation with the up-down glance. 

Our model to estimate the glance from EEG exploits the 

cumulative linear correlation with the vertical and horizontal 

glance direction of all connected channels. 

We assume the EEG amplifier provides the number of n 

channels, which are referenced to a ground electrode. For 

each channel,          , the measured EEG signal    is 

the sum of the effect of the glance   , and a remaining signal 

component    that is composed of (1) a channel specific, 

drifting baseline, (2) potential fluctuation induced by brain 

activity, as well as 3) noise. The contributions of (2) and (3) 

above are of significantly lower amplitude than the glance 

   and have zero mean. We write            for   
         

A computer screen is placed in front of the subject in 

close proximity given that the glance can still be 

comfortably directed into all corners of the screen. Let 

        denote the normalised coordinate on the screen 

                 . The contribution of the glance    on 

channel           is modelled as          
       

 
 

  where   
    

 
 are related to the coefficients shown in 

Figure 1.
 

B. Calibration 

During the calibration procedure of duration T, the subject is 

required to visually trace a moving cue at coordinate 

                 on the screen while keeping the head as 

still as possible. Subsequent to the calibration procedure, the 

system tolerates turning and tilting of the head quite 

successfully due to the way drift is handled (see Section 

III.C). Because of linearity, we express the correlation of the 

measurements    and the glance direction       at time   

simply by the matrix multiplication 
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The EEG collected during the calibration procedure from 

       , and the coordinates of the cue up-sampled to the 

rate of the EEG compile into an over-determined system of 

linear equations. The unknowns   
    

 
for             

are solved for by minimizing the squared error in Equation 

(1). The purpose of the coefficients   
    

 
 is to compensate 

for the baseline offset in all channels. Figure 2 shows the 

calibration procedure at different points in time. 

The synchronization of the EEG    with the cue position 

  on the screen is crucial in solving Equation (1). The 

common practice is to send trigger pulses to the amplifier 

via serial port messaging. However, there remains a bias that 

depends on the response rate of different graphics systems. 

So instead, we mount a photodiode circuit in front of the 

display to determine the lag between vision and EEG. The 

circuit consists of a photodiode and a resistor, and feeds 

directly into one of the spare channels of the amplifier. 

Periodic flashes on the display beneath the photodiode result 

in pulses of 100μV amplitude, and provide means of 

synchronization. The photodiode circuit is not required after 

calibration, as simply the most recent EEG available is used 

to estimate the glance direction. 

C. Algorithm 

Subsequent to the calibration procedure, we assume that the 

position         of the glance on the monitor is unknown. 

However, having solved the linear system defined by 

Equation (1), the coefficients   
    

 
for             are 

at hand to obtain an estimate  ̂    ̂  ̂  using the most 

recent EEG data,   . 
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Fig. 2: The cascade visualizes the accumulation of EEG at intervals of 15 seconds as the eyes track the cue that moves along the curve. At 

each location of the 36 electrodes the voltage is mapped within a square domain at the coordinate corresponding to the cue position. 

We simply evaluate 
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Since the signals induced by brain activity as well as the 

noise are assumed to have zero mean, these contributions are 

conveniently annihilated by averaging the results of 

Equation (2) for measurements    of the most recent 0.1 

sec. 

As discussed in [11], the measurements    might be 

subject to drift in the baselines. Consequently, the estimated 

position  ̂ is likely to be offset to the actual glance position 

after a short period of time. We make the assumption that 

the subject’s glance is directed to a point on the computer 

screen, thus, the estimated position should not be located 

outside the screen. As soon as Equation (2) yields a 

coordinate  ̂  ̂ outside the coordinate area of the screen (i.e. 

      ̂  ̂       we introduce a correction by translating 

each coordinate back into the valid area with the minimum 

shift necessary. This corrective term is applied to subsequent 

estimations until the condition       ̂  ̂     is violated 

again. 

The horizontal and vertical correction mechanisms are 

independent and identical, thus we only describe the 

compensation that corrects the horizontal glance estimation: 

We introduce a variable    to represent the offset of a 

window of view along the x-axis. Initially, we set     . 

Instead of  ̂, we define   ̂    ̂     to be the estimated 

glance position on the screen. If during the process   ̂ lies 

outside the screen, we simply update     Specifically, if 

  ̂    ̂        , we redefine   ̂    ̂   . On the other 

hand, if   ̂    ̂       , we update   ̂    ̂   . With the 

modified value    the estimation   ̂    ̂     is guaranteed 

to be within the bounds of the screen coordinate system [-1, 

1]. The final glance estimate is defined as   ̂     ̂   ̂ . 

Figure 3 shows an example how  ̂ and   ̂ might evolve in 

practice. 

D. Analysis 

There are different circumstances that generally lead to a 

deterioration of the approximation Equation (2); turning of 

the head or drift in the electrodes. However, our experiments 

suggest that all of these artefacts can be compensated using 

the strategy above. In fact, a simple computation reveals that 

adding constant offsets    to the measurements    for 

            can be compensated by this algorithm. 

Again, we demonstrate this only for the x-axis: 
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and   ̂    ̂      . By allowing for     , then   ̂  
  ̂         ̂. Thus, adding constant offsets    to    do 

not necessarily affect the estimation. The offsets    represent 

the alterations in the baselines due to drift. 

III. EXPERIMENTAL RESULTS 

A.  Subjects and Materials 

Twelve subjects aged between 18 and 45 participated in the 

experiments (Curtin University Ethics Reference SMEC-18-

10). Each subject is seated in front of a 22 inch monitor with 

a distance of 60 cm between forehead and screen. The screen 

is 47.3 cm wide and 29.7 cm high. Thus, the left-right glance 

angle ranges between ±21.5
o
, and the up-down glance angle 

is between ±13.9
o
. 

To acquire the EEG, we use the 40 channel monopolar 

digital amplifier NuAmps of which n = 36 channels are 

effectively connected to the subject. Optionally, two 

additional EOG electrodes labelled X2 and X3 are placed 

2cm below the left and right eye respectively. The amplifier 

links to the computer via USB. The measurements    for 

            are transmitted in packets covering time 

intervals of 0.2 sec, i.e. data packets are received by the 

controlling computer at a rate of 5 Hz. There is an additional 

delay of about 0.16 sec until the software that subscribed to 

the amplifier is notified that data is available. 

B.  Numerical Evaluation 

During calibration, each subject traces a moving cue with 

coordinates      on the screen over a period of T = 2 

minutes while holding the head still. The collected EEG data 

   for           is used to obtain the coefficients   
    

 
 

for             that minimize the squared error in 

Equation (1). Shortly afterwards, the subject traces the 

moving cue      again. The EEG data    from the second 

pass together with the coefficients   
    

 
 are used to 

simulate the performance of the algorithm in Section III-C. 

The output of the algorithm is the estimated target of glance 

  ̂    in screen coordinates.  
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Fig. 3: Glance estimation  ̂ over a period of 3 minutes (top), and mapped to the interval [±1, 1] results in the final glance estimation   ̂ 
(bottom)

 
TABLE 1 

VARIANCE OF ESTIMATION ERROR IN [cm2] 

 

We scale the difference              ̂    

(           ) according to the actual dimensions of the 

monitor to formulate the error in [cm] as 

 

                  (                           )                  

 

The variance of the estimated error for all 12 subjects is 

listed in Table 1. The correlation between horizontal and 

vertical approximation quality is significant. The standard 

deviation of the average error is less than 3.5 cm in each 

coordinate, which equivalents to 3.4 degrees of arc. The 

accuracy of glance estimation using traditional EOG 

equipment (six electrodes closely placed around the eyes) is 

stated for comparison: [12] reports a mean error of 1.8 

degrees of arc horizontally, and 3.1 degrees vertically; [13] 

reports a mean deviation of ±3.3 cm. These ratings serve as a 

guideline for the design of EOG controlled applications. 

 

The estimation algorithm is defined for any subset of 

electrodes. Using the recordings described above, we 

compute the accuracy of the estimation on subsets of 

electrodes. We investigate    which     electrodes     are most     

 

Fig. 4: Ordering of electrodes that minimize the maximum of 

horizontal and vertical estimation error obtained by greedy 

optimization. The dashed lines correspond to the ordering of 

electrodes mirrored along the centerline of the head for the purpose 

of comparison. Top: Electrodes X2 and X3 are connected 2cm 

below the eyes. Bottom: No electrodes below the eyes. 

 

valuable to simultaneously minimize the error in left-right 

and up-down glance.     

 

Using greedy optimization, we minimize 

                    ∑           
 

  

   

          
 
                                 

 

where       denotes the error function for subject   

        : starting with an empty subset of electrodes, each 

iteration we add the respective electrode that reduces 

Equation (5) most. This process yields a priority list of 

electrodes, see Figure 4. For instance, if the system ought to 

run with nine electrodes only, our evaluation suggests to 

connect FT9, F8, X3, Fp2, FT10, Fp1, X2, C4, and ground 
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GND. The configuration may be mirrored along the centre 

line of the head without loss of precision. 

C. Application Benchmarks 

Software to spell words is a popular benchmark among 

applications controlled by EOG [4]. Our spelling software 

demonstrates the reliability and convenience of our novel 

drift compensation. The letters of the English alphabet are 

aligned sequentially along an ellipse on the screen. This 

alignment increases the probability that an offset in the 

estimation of glance due to drift resulting in a position 

outside of the screen, is corrected. In addition, our speller is 

dictionary based, which generally eases the selection of 

characters after the first few letters of a word have been 

spelled. Figure 3 shows the coordinates of  ̂ and   ̂ for a 

sample trial. A calibration process of 1 minute duration 

precedes the spelling.  

In a recording of 27 minutes duration 358 characters 

(including spaces) were spelled. This is equivalent to 13.25 

characters per minute with an accuracy of 100%. The 

average number of characters to choose from was N = 17.4, 

the average duration for a character selection was T = 4.7 

seconds, and the selection was correct with a probability of 

P = 0.98 (errors could be corrected by a backspace function). 

In terms of the information rate derived from [14], the 

number of bits transferred per second was  
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For comparison: The EOG controlled speller in [4] allows 

subjects to spell 5 letters in 24.7 sec.  

 Another application classic is the game Breakout [15]: 

The game is about positioning a paddle on the bottom of the 

screen to bounce off a ball. The control in our 

implementation relies only on the correct estimation of x-

glance. To create an incentive for the subject to vary the 

glance along the x-axis and to reach the boundary of the 

screen, the ball never bounces off vertically. The gameplay 

consists only of a single state and is intuitive. Playing the 

game has been the favourite activity among the 12 

volunteers who tested our EEG system. 

IV. CONCLUSION 

Previous EOG-based control schemes applied a high-pass 

filter to overcome the drift in the voltage measurements. 

Because the filter removes any constant offset, these 

schemes allow only for velocity control: rapid eye 

movements of the subject are recognized, but steady glance 

is not encoded. Therefore, EOG-based applications typically 

consist of a set of states. Transitions between the states 

occur when the subject oscillates the glance direction, or 

blinks [4]. However, fast oscillation of gaze direction, or 

frequent eye blinking can cause subject fatigue over a 

prolonged period. In contrast, our algorithm does not filter 

the data. The subject controls the application by simply 

glancing at a target location on a computer screen. As a 

consequence, our applications use fewer states, and are more 

seamless to operate. The numerical evaluations and the 

performance of our benchmark applications suggest that 

control via glance direction is both more accurate and less 

exhausting than control via rapid eye gestures. Researchers 

have custom built EOG circuits, in order to reduce the cost 

and complexity of hardware [3]. We look forward to learn 

about applying our algorithm on this specialized hardware. 

The glance estimation presented in this paper has a smaller 

calibration-to-operation ratio and is numerically stable. In 

the future, we hope to show that our algorithm benefits the 

removal of eye artefacts from EEG. 
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