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Abstract— Reduced fetal movement is an important param-
eter to assess fetal distress. Currently, no suitable methods are
available that can objectively assess fetal movement during
pregnancy. Fetal vectorcardiographic (VCG) loop alignment
could be such a method. In general, the goal of VCG loop
alignment is to correct for motion-induced changes in the VCGs
of (multiple) consecutive heartbeats. However, the parameters
used for loop alignment also provide information to assess
fetal movement. Unfortunately, current methods for VCG loop
alignment are not robust against low-quality VCG signals. In
this paper, a more robust method for VCG loop alignment
is developed that includes a priori information on the loop
alignment, yielding a maximum a posteriori loop alignment.
Classification, based on movement parameters extracted from
the alignment, is subsequently performed using support vector
machines, resulting in correct classification of (absence of) fetal
movement in about 75% of cases. After additional validation
and optimization, this method can possibly be employed for
continuous fetal movement monitoring.

I. INTRODUCTION

The vectorcardiogram is a 3-dimensional representation

of the electrical activity of a beating heart and as such

holds more diagnostic information than its 1-dimensional

counterpart, the electrocardiogram. The alignment of vec-

torcardiographic (VCG) loops is of interest in electrocardio-

graphic (ECG) applications where more than one heartbeat is

analyzed at the same time. However, mechanical movement

of the heart, e.g. induced by respiration, causes variations in

the ECG morphology, complicating diagnostics on electrical

instability.

In the literature [1], [2], methods have been proposed

for spatiotemporal alignment of VCG loops to minimize

movement-induced ECG variability. These methods operate

by applying a set of transformations – time synchronization,

rotation, and scaling – on each VCG loop to maximize the

correspondence with a reference VCG loop. However, VCG

loop alignment does not only have value in facilitating as-

sessment of multiple heartbeats simultaneously, but, based on

the applied transformations, also information on mechanical

movement of the heart can be obtained.

In the case of fetal ECG measurements on the maternal

abdomen, the mechanical movement of the heart would not

only entail movement of the fetal heart inside the fetal thorax,

but would mostly entail movement of the fetal thorax with

respect to the electrode grid on the maternal abdomen. In

other words, fetal VCG loop alignment would yield a tool

to monitor fetal movement. Such movement has been proven
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to be a valuable diagnostic parameter to assess fetal distress

[3] and is currently mostly assessed by maternal perception,

which is liable to substantial inter-patient variability [4].

Two problems arise aiming at the use of fetal VCG

loop alignment for fetal movement detection. Firstly, the

signal quality of abdominal fetal ECG measurements is

much poorer than that of adult ECG recordings. In [5],

it has been reported that the performance of the earlier-

mentioned VCG loop alignment methods deteriorates with

decreasing signal-to-noise ratios. The robustness of VCG

loop alignment, hence, needs to be improved. Secondly,

the transformations applied in the loop alignment do not

provide direct information on fetal motility. Therefore, these

transformations need to be used as input in a classification

(i.e. between fetal movement and fetal rest) problem.

In this paper, the first problem is addressed by extend-

ing the maximum-likelihood (ML) approach of the existing

methods to a maximum-a-posteriori (MAP) approach, in

which prior assumptions on the transformations are included

to increase the robustness of the alignment. The parameter

inference problem for this MAP approach is solved using

the expectation-maximization (EM) algorithm. The second

problem is addressed by using support vector machines

(SVM) to achieve correct classification of episodes of fetal

movement and fetal rest.

II. VECTORCARDIOGRAPHIC MOVEMENT ASSESSMENT

A. Vectorcardiographic loop alignment

In the model proposed in [2], the VCG loop at time t can

be described by a [3×M] matrix Zt , where M is the length

of the VCG loop. Each of the three [1×M] row vectors in

Zt constitutes the QRS-part of one of the three orthogonal

Frank leads.

Based on the quasi-periodicity of the ECG (and also of

the derived VCG), Zt can be described as a function of the

preceding VCG loop Zt−1. In this description, Zt−1 is altered

by a series of transformations, i.e., time-synchronization,

scaling, and rotation [2]. Mathematically, the relation be-

tween Zt and Zt−1 can be described as

Zt = RBZt−1Jτ +H. (1)

Here, R is a [3×3] rotation matrix and B is a [3×3] diagonal

scaling matrix. Jτ indicates the shift matrix that shifts Zt−1

over τ samples. Finally, Zt is assumed to be additively

corrupted by a [3×M] zero-mean Gaussian noise matrix H

that accounts for any aspect of Zt that cannot be described

by the transformation of Zt−1.
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Let us initially assume the time shift τ to be constant and

known. Inference of the model parameters hence reduces to

finding the MAP estimates of R and B. Using Bayes’ rule, the

posterior probability distribution for these parameters, given

the recorded VCG loops Zt and Zt−1, and the time shift τ ,

can be written as:

p(R,B |Zt ,Zt−1,τ ) ∝ p(Zt |R,B,Zt−1,τ ) p(R,B) . (2)

In order to maximize the posterior probability distribution

p(R,B|Zt ,Zt−1,τ) for both R and B, we reformulate our

inference problem to first find the MAP estimate for B, given

the measurement data Zt and Zt−1, and a hidden nuisance

parameter R [6]. The estimation of B now boils down to

application of the EM algorithm.

In order to infer B, we can maximize the posterior proba-

bility distribution of B, while marginalizing Eq. (2) over the

hidden parameter R:

B̂ = argmax
B

∫

p(Zt |R,B,Zt−1,τ ) p(R,B)dR. (3)

Exploiting the fact that the logarithm is a monotonically in-

creasing function, and introducing the probability distribution

p(R|Zt , B̂
old

) in which B̂
old

is defined as an initial guess for

B̂, Eq. (3) can be re-expressed as:

B̂ = argmax
B

ln

∫

p
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∣
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) dR. (4)

Here, for clarity, the terms Zt−1 and τ have been omitted.

Using Jensen’s inequality, we can define a lower bound

L for the term on the righthand-side of Eq. (4):

L =
∫

p
(

R

∣

∣

∣
Zt , B̂

old
)

ln
p(Zt |R,B ) p(R,B)

p
(

R

∣

∣
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old
) dR. (5)

With this lower bound, we have transformed the logarithm

of an integral in Eq. (4) into the integral of a logarithm

in Eq. (5). By iteratively maximizing L with respect to B

(referred to as the M-step) and subsequently updating L for

the new B̂
old

(referred to as the E-step), we can ensure that

the estimate for B converges to a local maximum.

1) E-step: probability distribution of R: Updating the

lower bound, based on the estimate B̂
old

, basically corre-

sponds to updating the probability distribution p(R|Zt , B̂
old

)
[6]. This probability distribution can be calculated using

Bayes’ rule and the model of Eq. (1). Unfortunately, when

using this probability distribution in the M-step, an analyti-

cally insolvable problem emerges.

To overcome this problem, we assume infinite accuracy in

the estimation of R. As a result, an ML estimate RML can

be estimated and used to define the probability distribution

p(R|Zt , B̂
old

) as a Dirac function:

p
(

R

∣

∣

∣
Zt , B̂

old
)

= δ
(

R− R̂
ML
)

. (6)

The ML estimate for R can be calculated following the

approach in [2]:

R̂
ML

= ΘΓ
T , (7)

where Θ and Γ are the left and right eigenvectors of the

matrix ZtJ
T
τ ZT

t−1B̂
oldT

, respectively, and are obtained from

the singular value decomposition of this matrix.

2) M-step: estimation of B: Combining Eqs. (5)-(7) and

omitting terms that do not depend on B, the lower bound L

can be written as

L = ln p
(

Zt

∣

∣

∣
R̂

ML
,B
)

+ ln p
(

R̂
ML

,B
)

. (8)

The prior probability distribution p(R̂
ML

,B) describes our

prior knowledge on scaling and rotation. By assuming these

transformations to be statistically independent, and assuming

R̂
old

to be known and the scaling to show minor fluctuations

between heartbeats [1] (e.g. Gaussian distributed around 1

with variance σ2
B), the prior probability distribution can be

written as:

p
(

R̂
ML

,B
)

∝ exp

[

−
1

2σ2
B

‖B− I3‖
2
F

]

, (9)

where I3 is the [3×3] unit matrix.

Combining Eqs. (8) and (9) and maximizing L with

respect to B yields the MAP estimate for B:

B̂MAP
kk =

σ2
B

(
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MLT

ZtJ
T
τ Z̃

T
t−1

)

kk
+σ2

η

σ2
B

(

Z̃t−1Jτ JT
τ Z̃

T
t−1

)

kk
+σ2

η

, (10)

where Xkk are the diagonal entries of matrix X and σ2
η is

the variance of the measurement noise. The current estimate

B̂
MAP

is used in the next iteration of the EM algorithm as

the most recent estimate B̂
old

.

3) Time synchronization: Up until now, we have assumed

the time shift τ to be constant and known. For this constant

value of τ we can infer both B̂ and R̂, using the EM algorithm

described above. After convergence of the EM algorithm,

other values for τ can be tested using a grid search. A ML

estimate for τ can subsequently be inferred according to:

τ̂ML = argmin
τ

∥

∥

∥
Zt − R̂

ML
B̂

MAP
Zt−1Jτ

∥

∥

∥

2

F
. (11)

B. Movement classification using SVM

As mentioned previously, the transformations applied to

the VCG loop Zt−1 to make it resemble Zt as much as

possible provide information on mechanical movement of

the fetal heart. In particular, the rotation matrix R and

the scaling matrix B provide information on movement.

Obviously, when the heart is rotating between beats, this

can be seen in the VCG loops as rotation. However, upon

rotation of the fetus, the tissue distribution between fetal

heart and abdominal electrodes will change as well. This

change in tissue distribution affects the volume conductor

between heart and electrodes and causes variations in the

amplitude of the abdominal fetal ECG, and hence also in

the VCG loops.

In this paper, we use two-dimensional SVMs (i.e. SVMs

with a two-dimensional data vector) to classify the rotational

and scaling information into either fetal movement or fetal

rest. In terms of rotation, fetal rest entails a rotation matrix
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Fig. 1. Example of a fetal ECG recording.

equal to I3. Similarly, no scaling with respect to the previous

VCG loop entails a unit scaling matrix. The rotational and

scaling movement parameters are therefore, respectively,

defined as:

MR =
∥

∥R̂− I3

∥

∥

2

F
and MB =

∥

∥B̂− I3

∥

∥

2

F
, (12)

where ‖ · ‖2
F indicates the Frobenius norm.

For the implementation of the SVMs, the standard imple-

mentation svmtrain in the Bioinformatics toolbox of Matlabr

(The Mathworks, Inc. Natick, MA) is used. Besides a linear

kernel function, the use of quadratic, 3rd order polynomial,

Gaussian radial basis function (rbf), and 2-layer multilayer

perceptron (mlp) kernels is also investigated.

III. METHODOLOGY FOR EVALUATION

A. Data collection

In total, fetal ECG recording has been performed in

eight women with gestational ages ranging from 24 to 41

weeks, after having given written informed consent. The

ECG recordings have been performed at the Máxima Medical

Center (Veldhoven, the Netherlands) with eight electrodes

placed on the maternal abdomen. Each recording ranged

from 10 to 20 minutes, containing over 104 fetal heartbeats.

The signals have been acquired at 1 kHz sampling rate

and have been processed to suppress the maternal ECG and

obtain the VCG, using a template subtraction method [7] and

Bayesian vectorcardiography method [8], respectively.

In Fig. 1, an example of 5 seconds of data from one of the

channels of an 8-channel fetal ECG recording is depicted.

B. Definition of ση and σB

In order to implement the VCG loop alignment presented

in Section II, the variance of the measurement noise σ2
η

and the assumed variance in the scaling σ2
B need to be

defined. Measurement noise is typically temporally uncor-

related with the (quasi-)periodic ECG signal. By averaging

various consecutive ECG complexes synchronized on e.g. the

QRS complex, a clean reference ECG can hence be obtained.

The difference between each individual ECG complex and

this reference ECG can subsequently be considered as an

approximation of the measurement noise in the individual

ECG complexes. In this paper, the value used for σ2
η is

the variance of the estimated measurement noise signals,

averaged over the eight recorded ECG signals. The optimal

value for σ2
B has empirically be determined at 0.1.

C. Reference method for movement detection

Simultaneously with the abdominal fetal ECG measure-

ments, we performed ultrasound recordings using an Aloka

SSD1100 ultrasound device (Aloka, Japan). The ultrasound

images were stored using a ”framegrabber” software for

playback options. Fetal movement from the ultrasound

recordings was quantified by visual inspection of an expert.

Since fetal movement from VCG loop alignment is deter-

mined for every heartbeat, the ultrasound analysis results are

resampled to yield a reference classification vector for which

the length corresponds to the number of heartbeats.

D. Evaluation of SVM

For training the SVMs, various training sets of randomly

selected heartbeats are used with the set size ranging from

50 to 2000 heartbeats. The definition of the reference class

vector used in the training and classification performance

assessment is discussed in Section III-C. To evaluate the

performance of the SVMs, the sensitivity and specificity

in the detection of fetal movement are determined. The

sensitivity is here defined as the fraction of correctly classi-

fied heartbeats during fetal movement. The specificity is the

fraction of correctly classified heartbeats during fetal rest.

To gauge the performance of the SVMs, their sensitivity

and specificity are compared to that of linear classifiers.

These linear classifiers are applied with various gradients,

ranging from 0.8 to 1.2. For each gradient, virtually all

possible biases have been applied, yielding a full ROC curve

for the linear classifiers. It has to be stressed that these linear

classifiers have been optimized on the basis of the whole data

set of the eight abdominal fetal ECG recordings.

IV. RESULTS OF MOVEMENT DETECTION

In Fig. 2, the fetal movement parameters MR and MB

are depicted during periods of fetal movement and fetal rest

for one of the fetal ECG recordings. Both MR and MB are

significantly different between the two classes (i.e. periods

of movement and periods of rest) with p-values smaller than

0.001 for both of them. In Fig. 2(b) and 2(c), VCG loops

corresponding to consecutive heartbeats are depicted during

a period of low and relatively high fetal motility, respectively.

In Fig. 3, the ROC curves for the linear classifiers are

depicted together with the results of the various SVM kernels

and sizes of training sets. By performing logistic regression,

an optimal gradient and bias for the linear classifiers can be

found: MB = 0.92MR−0.04, yielding a sensitivity of 0.47

and specificity of 0.87 (also depicted in Fig. 3 as log reg).

V. DISCUSSION & CONCLUSIONS

In this paper, a method has been presented for MAP

alignment of fetal VCG loops with the goal of detecting fetal

movement. From the results in Fig. 3, it can be concluded

that VCG alignment can be used to classify between fetal

movement and fetal rest. The size of the training set used

by the SVMs to determine the classifier, seems to have

relatively small impact on the specificity of the classification.

The classification sensitivity, on average, improves with
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Fig. 2. (a) Fetal movement parameters MR and MB plotted for one of the
fetal ECG recordings, both for periods of fetal movement (indicated with x-
marks) and for periods of no fetal movement (indicated with o-marks). The
movement/rest periods are determined based on ultrasound analysis. The
solid line indicates the optimal linear classification boundary with gradient
of a = 0.9. (b) and (c) Two consecutive VCG loops (solid and dashed
lines) during a period of no fetal movement and a period of movement,
respectively. The specific fetal movement parameters corresponding to the
VCG loops of (b) and (c) are also indicated in (a).
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Fig. 3. ROC plot for the fetal movement classification. The lines indicate
the classification performance of linear classifiers with a priori defined
gradients a. Each point along the line represents a different bias for the
linear classifier. The markers illustrate the performance of other (non)linear
classifiers for which the settings are determined using SVMs. The smallest
markers indicate a training set size of 50, increasing via set sizes of 100,
150, 200, 250, 400, 500, 1000, and 1500 to the largest marker indicating a
training set size of 2000 heartbeats. The dotted line indicates the line of no
discrimination.

increasing size of the training set. The reason for the smaller

impact on specificity than on sensitivity of the training set

size can be explained by the fact that, for the data used in

this study, the fetuses were resting approximately 25% more

than that they were awake/moving. As a result, the various

SVM classifiers were biased towards the accurate detection

of fetal rest. In clinical practice, fetuses are also expected to

rest more than to be awake and moving.

When comparing the nonlinear SVMs to the linear clas-

sifiers, it shows that both perform similar in detecting fetal

movement. Exception is the mlp-kernel SVM for which the

sensitivity/specificity is close to the line of no discrimination,

indicating that this SVM is unsuitable for fetal movement

detection. Upon use in clinical practice, specificity of the

classification is more relevant than sensitivity. That is, the

lack of fetal movement, especially when the fetus is awake,

is an indication for fetal distress, whereas the presence of

fetal movement does not automatically imply a good fetal

condition. In addition, based on the finding that a small

training set suffices for achieving a relatively high specificity

in movement classification, it can be argued that a patient-

invariable classifier should exist that can assess lack of fetal

movement with a certainty of about 75%. Based on the

results of the logistic regression, a specificity of 0.87 is

achievable.

Based on these statements, it can be concluded that fetal

VCG alignment can provide a valuable tool for assessing the

fetal health condition. Due to its objectivity, it is expected

to outperform movement counting by the mother, since this

has been reported to be significantly susceptible to inter-

patient variability [4]. Clinical decision-making based on

the assessed movement (or lack thereof), however, requires

additional studies. These studies need to assess whether

absolute, relative and/or patient-specific cutoff values are

needed for discriminating between ’still enough’ and ’too

little’ fetal movements.
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