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Abstract— The diagnosis of obstructive sleep apnea (OSA)
relies on polysomnography (PSG), a multidimensional biosignal
recording that is conducted in sleep laboratories. Standard
PSG montage involves the use of nasal-oral airflow sensors to
visualize cyclic episodes of upper airflow interruption, which
are considered diagnostic of sleep apnea. Given the high-cost
and discomfort associated with in-laboratory PSG, there is
an emergent need for novel technology that simplifies OSA
screening and diagnosis with less expensive methods. The main
goal of this project was to identify novel OSA signatures
based on the spectral analysis of thoraco-abdominal motion
channels. Our main hypothesis was that proper spectral analysis
can detect OSA cycles in adults using simultaneous recording
of oxygen saturation (SaO2) and either, chest or abdominal
motion. A sample study on 35 individuals was conducted with
statistically significant results that suggest a strong relationship
between airflow-independent signals and oxygen saturation.
The impact of this new approach is that it may allow the
design of more comfortable and reliable portable devices for
screening, diagnosis and monitoring of OSA, functioning only
with oximetry and airflow-independent (abdominal or chest)
breathing sensors.

I. INTRODUCTION

Obstructive sleep apnea (OSA) is an important condition

that affects approximately 4-5 percent of adults and is

linked to life-threatening cardiovascular disorders such as

stroke and myocardial infarction [1, 2]. The diagnosis of

OSA relies on polysomnography (PSG), a multidimensional

overnight biosignal recording that is typically conducted

in sleep laboratories. Standard in-laboratory PSG montage

involves the use of nasal-oral airflow sensors to visualize

cyclic episodes of upper airflow interruption, which are

considered diagnostic of sleep apnea [3]. Given the high-cost

and discomfort associated with in-laboratory PSG, there
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is an emergent need for novel technology that streamline

OSA screening and diagnosis with less expensive methods

[4]. In this regard, simplified systems have been proposed

to identify the cyclical pattern of OSA using spectral

analysis of PSG biosignals [5–7]. Indeed, previous studies

have reported that the low frequency component of the

PSG power spectrum contains crucial information on the

periodic nature of OSA events. For instance, frequency and

time-frequency spectral analysis of pulse, blood pressure

and heart rate variability (HRV) demonstrate oscillations in

the low frequency range (i.e. 0.01 - 0.1 Hz) that correlate

with the presence of OSA [5–7]. Moreover, Alvarez et al.

have recently reported that the magnitude squared coherence

(MSC) analysis of simultaneously recorded airflow and

oxymetry signals also displays OSA-related oscillations in

the low frequency band of the PSG spectrogram [8]. The

latter information supports the notion that the presence of

low-frequency oscillations in the spectral analysis of PSG

biosignals is an important diagnostic signature of OSA

that maybe used to develop simplified tools to detect this

condition.

The development of simplified OSA-diagnostic tools based

on spectral analysis is hampered by the sensors required

to acquire airflow signals. Airflow sensors often cause

facial discomfort and signal artifacts due to dislodgment

of nasal-oral transducers during sleep [9], an issue that

affects the feasibility of unattended home sleep studies.

OSA detection relies on airflow sensors because the absence

or reduction of nasal-oral airflow is considered a sign of

upper airway obstruction [3]. Interestingly, although upper

airway obstruction is also manifested as changes in thoracic

pressures and thoraco-abdominal motion [10], these airflow-

independent parameters are not used as primary indicators

of OSA in standard PSG [3]. Accordingly, the main goal of

this project was to identify novel OSA signatures based on

the spectral analysis of thoraco-abdominal motion channels.

To this end, we applied spectral signal processing to

PSG data and compute the MSC between chest-abdominal

respiratory signals and oxygen saturation (SaO2) to elucidate

airflow-independent diagnostic features of OSA. Our main

hypothesis is that MSC analysis can detect OSA cycles in

adults using simultaneous recording of SaO2 and either,

chest or abdominal motion. The impact of this new approach

is that it may allow the design of more comfortable and

reliable portable devices for screening, diagnosis and

monitoring of OSA, functioning only with oximetry and
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airflow-independent (abdominal or chest) breathing sensors.

II. METHODOLOGY

A. Study Sample, Signal Acquisition and Polysomonography

(PSG) Protocol

PSG data from 35 adult subjects with OSA (n = 15) or

without OSA (n = 20) that underwent routine sleep study at

Penn State Sleep Research and Treatment Center (Hershey,

PA, U.S.A.) were used for signal processing and spectral

analysis. Adult subjects (older than 18 years of age) of both

genders were included. Table I shows demographic and PSG

scoring data of the study subjects. This project was approved

by the Institutional Review Board of Penn State College of

Medicine.

TABLE I: Study Sample Characteristics1

Total No OSA OSA P-value

(n=35) (n=20) (n=15)

Age: yrs (SE) 48.6 (2.1) 46.3(2.8) 51.7(3) NS

Male gender: n(%) 21(60%) 13(65%) 8(53.3%) NS

BMI: kg/m2(SE) 32.4(1.3) 30.1(1.7) 35.5(2) 0.04**

Waist: cm (SE) 106.5(2.5) 102.4(2.7) 112(4.6) NS

OAHI: (e/hr) 18(3.6) 2(0.4) 39(4.5) < 0.01**

1 Demographic and polysomnographic profile of subjects. Data are pre-
sented as mean ± standard error (SE). BMI: body mass index; OAHI:
obstructive apnea-hypopnea index.

Standard PSG montage was performed on all subjects

according to American Academy of Sleep Medicine (AASM)

guidelines [3]. During an 8-10 hr period, sleep was con-

tinuously recorded to a computerized system (Twin PSG

software; Grass Technologies. Inc., West Warwick, RI). All

signals were sampled at 200 Hz. PSG signals included in this

study were thoracic chest and abdominal abd wall motion

(respiratory inductance plethysmography), pulse oximetry

SaO2 (with 2-s averaging time) and combined nasal/oral

thermistor CTC (model TCT R, Grass Technologies. Inc.,

West Warwick, RI). PSG was scored manually in 30-s epochs

using AASM standardized criteria. Calculation of obstructive

apnea-hypopnea index (OAHI) included the sum of obstruc-

tive apneas, hypopneas, and mixed apneas divided by total

sleep time and expressed as events/hour (e/h). The minimum

respiratory event duration was at 10 seconds. Obstructive

apneas were scored if there was a 90 percent or greater

fall in the signal amplitude for more than 90 percent of

the entire respiratory event with continued respiratory effort

throughout the entire period of decreased airflow. Mixed

apneas were scored if there was a fall in the airflow greather

than 90 percent with a period of no respiratory effort and a

period of continued respiratory effort associated. Obstructive

hypopneas were scored if there was a discernible decrease in

airflow of approximately 50 percent associated with either a

3 percent SaO2 desaturation and/or an arousal.

B. Robust Coherence Spectrum Analysis

The magnitude squared coherence (MSC) spectrum of two

signals x(n), y(n) is related to the cross-correlation between

the signals, i.e Rxy, and brings information about the rate

at which one signal influences the other [11]. By definition,

the MSC is the ratio

0 ≤ γ2xy(f) =
|Sxy(f)|

2

Sx(f)Sy(f)
≤ 1, (1)

where |Sxy(f)|
2 = F {Rxy} is the cross-spectrum density

between x(n) and y(n), and |Sx(f)|
2 = F {Rx} and

|Sy(f)|
2 = F {Ry} are the power spectrum density

functions of x(n) and y(n) respectively. The operator F {·}
denotes a Discrete-Time Fourier Transform, and Rx, Ry

correspond each to the autocorrelation functions of x(n)and

y(n). The rationale behind the use of the MSC to study

SaO2 in combination with certain body signals, such as CTC,

is straightforward and stems from the direct physiological

influence between airflow and oxygen saturation. Previous

studies on the subject have confirmed this relationship, iden-

tifying a band of interest between 0 and 0.5 Hz [8]. However,

some airflow-independent signals such as those coming from

motion sensors located in chest and abdomen are also greatly

influenced by breathing events (including the breathing rate),

therefore those signals should also have a relationship with

oxygen saturation. Such is the hypothesis being tested in this

study. The calculation of the Coherence Spectrum between

SaO2 and signals from airflow (CTC), chest or abdomen

was performed by adapting a robust low-rank decomposition

method, such as the one described in [12]. From each pair of

signals, for example SaO2 and CTC, data is first divided into

overlapping windows, an estimate of the MSC is computed at

every windowed segment, and the result is then averaged over

all windows. In order to prevent masking of low-frequency

components, particularly due to spectral leakage coming

from the large D.C component of SaO2, the signals were

always treated as zero-mean signals. In this case, for a pair of

data windows of equal length L, the zero-mean real vectors

x(n), y(n) are formed by substracting their respective mean

values. The cross-correlation matrix is then defined as

R(l1, l2) =







E {xnyn} · · · E {xnyn−L+1}
...

. . .
...

E {xn−L+1yn} · · · E {xnyn}







(2)

where the matrix entries given by E {xn−l1yn−l2} are the

expectations between the value of signal x at times n − l1
and the signal y at times n − l2, with l1, l2 ∈ [0, L − 1].
Assuming ergodicity, an estimate of Rxy may be obtained

with time averages of each matrix entry. In similar fashion,

the auto-correlation matrices Rx, Ry may be defined and

estimated. The coherence matrix Γxy is then defined as

Γxy = R−1/2
x RxyR

−1/2
y . (3)

A numerical estimate of the MSC function, i.e γ2xy(f), is

achieved by first defining the Discrete Fourier Transform

vector F(f) =
[

1 . . . e−j2πf(L−1)
]H
· 1
√

L
, f ∈ [0, 0.5],

and then computing

γ2xy(f) = |F(f)HΓxyF(f)|
2. (4)
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By SVD theory, the matrix Γxy may be decomposed as the

product Γxy = UΛVT, where the matrices U, V are

unitary, and Λ is a diagonal matrix with all the singular

values of Γxy. A more robust, low-rank estimate is then

achieved by selecting the subspace associated with the largest

coherence components, which spans those components with

highest correlation and is less affected by estimation errors,

for example errors due to finite sample effects, measurement

noise, etc. More interestingly, by using a subspace spanned

by large coherence components in airflow-independent sig-

nals the aim is also to avoid artifacts coming from non-

breathing events, such as those commonly caused by body

motion. For this low-rank decomposition only the k < L

largest singular values and their corresponding columns

in the matrices U, V are kept in the modified matrices

Û, Λ̂, V̂. Defining

Γ̂xy = ÛΛ̂V̂T, (5)

the robust MSC estimate of a pair of data windows is then

γ̂2xy(f) = |F(f)H Γ̂xyF(f)|
2. (6)

In the study, a window length L = 120, Bartlett windowing

with 50 percent overlap and a low-rank decomposition with

k = 2 were selected. In order to achieve the best possible

resolution in the frequency band from 0 to 0.5 Hz, the signals

were sharply filtered and downsampled to 1 Hz. Also, in a

previous step, a zero-order interpolation was used to filter the

SaO2 signal from any artifacts coming from loose sensors

during acquisition. Frequency samples of γ̂2(fj) were esti-

mated at equally spaced points fj =
j
L , j = 0, 1, . . . , L2 . The

results are shown in Fig. 1(a)-(c). By looking at the average

MSC functions of SaO2 vs chest and abdomen, it is apparent

a peak in the higher frequencies (0.1-0.5 Hz), suggesting a

relationship between airflow-independent signals and oxygen

saturation. The same peak appears in the MSC of SaO2 vs

CTC, which corresponds to the normal breathing cycle. Also

in Fig. 1, since results are discriminated by subjects with

and without OSA, it is readily apparent a spectral difference

in the lower frequency band, approximately between 0.01

and 0.10 Hz, with increased energy in the OSA cases. For

comparison purposes, the same MSC plots are included for

SaO2 vs airflow (Fig. 1(a)). It is also observed that there is an

apparent shift of the high frequency components in the MSC

power spectra of OSA patients, which is possibly explained

by the fact that some of the energy of the breathing cycle

has been shifted to the lower frequencies. In other words,

rather than a frequency shift of the breathing cycle, what

is apparent is a different distribution of breathing energy

in OSA patients. With this observation in mind, the most

prominent feature to be tested as a classifying feature is the

peak amplitude in the power spectrum at the low-frequency

band (0.01-0.10 Hz). Existence of energy concentrations at

normal breathing frequencies is not to be used for statistical

analysis.
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(c) SaO2 vs Abd

Fig. 1: Robust MSC estimates of oxygen saturation vs airflow(a)

and airflow-independent signals(b),(c). Results are the grand aver-

ages of the MSC Spectra, discriminated in groups of patients with

and without OSA.

C. Statistical Analysis

Data were analyzed using the software SAS version

9.2 or later (SAS Institute Inc., Cary, NC). For pair-wise

relationships, two-sample t-test or non-parametric testing

was used to compare the value of continuous outcomes

and chi-square test was used to compare the proportion of

positive signals for binary outcomes. Multivariate regression

contrasted the peak amplitude (PA) in the power spectrum

at the low-frequency (LF) band (0.01-0.1 Hz) from different

MSC models (i.e. SaO2 vs. CTC, chest or abd) in subjects

with and without OSA while adjusting for demographic and

anthropometric variables. Pearson correlation coefficient (r)

was used to evaluate the linear relationships between airflow

(CTC) and airflow-independent (chest or abd) signals after

MSC analysis. OSA parameters from spectral analysis (i.e.

PA at LF band) were also correlated (r) with standard

PSG scoring (i.e. OAHI). Significance level was taken at

p < 0.05.
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III. RESULTS AND DISCUSSION

To test the hypothesis that the low-frequency component

(0.01-0.1 Hz) of the spectral coherence PSG analysis con-

tains OSA diagnostic features, we first used data obtained

from airflow signals (CTC) and simultaneous oxymetry

(SaO2) recording. As illustrated in Fig. 1(a) there were two

distinctive PA identified by MSC analysis of CTC-SaO2 sig-

nals, one at low-frequency (LF-PA= 0.01-0.1 Hz) and another

at high-frequency (HF-PA= 0.15-0.3 Hz). Given that normal

sleep respiratory cycles are approximately 10-20 breaths

per min, we concluded that the HF-PA corresponded to

normal respiratory oscillations, which were not significantly

different in subjects with or without OSA (Fig. 1(a)). In

contrast, the LF-PA was significantly higher in subjects with

OSA indicating that the LF-PA contained information on the

periodic nature of OSA cycles (Fig. 1(a)). These findings are

in general agreement with prior studies using cardiovascular

PSG signals (i.e. HRV in ECG), blood pressure and airflow

channels to detect OSA [5–7].

TABLE II: Multivariate Analysis of Spectral Features and

Clinical Variables1

LF-PA Chest P-value LF-PA Abd P-value

OSA 0.079 (0.02) <0.01** 0.093 (0.03) <0.01**

Age(yrs) 0.682 0.443

Gender 0.978 0.865

BMI(kg/m2) 0.565 0.777

Waist(cm) 0.121 0.407

1 Regression coefficients ± standard error (SE) of chest and abdominal
spectral features discriminated by OSA status and adjusted by covari-
ates. LF-PA: low-frequency band peak amplitude in magnitude squared
coherence analysis with SaO2.

Given that airflow sensors are poorly tolerated due to its

nasal-oral placement [9], we next investigated whether the

OSA-related LF-PA was also detectable using MCS analysis

derived from airflow-independent respiratory PSG channels

(chest and abd motion) and simultaneous SaO2 recording.

Figs. 1(b),(c) illustrate that LF-PA is a distinctive trait of

subjects with OSA seen in airflow-independent channels,

which is independent of body mass index (BMI), abdominal

circumference, age and gender (Table. II). Collectively, these

findings demonstrate that the spectral analysis of thoraco-

abdominal motion and oxymetry identifies OSA diagnostic

signatures that are independent of airflow.

OSA is caused by upper airway obstruction, which in turn

alters nasal-oral airflow and thoraco-abdominal pressure and

motion [10]. Standard PSG analysis relies on airflow ab-

normalities for OSA detection. We postulate that the airflow

abnormalities caused by OSA have correspondent changes in

thoraco-abdominal motion that can be detected by spectral

PSG analysis. To address this hypothesis, we examined

the linear correlation between the LF-PA values obtained

in MCS analysis derived from chest-SaO2 or abd-SaO2

(airflow-independent signals) with LF-PA values obtained by

airflow spectral parameters (CTC-SaO2) or standard PSG

visual OSA severity scoring (OAHI= events/hr). Table III

illustrates significant linear relationships between LF-PA

values obtained by chest-SaO2 and either, LF-PA from CTC-

SaO2 signals (r = 0.83, p < 0.01) or OAHI from PSG

visual severity scoring (r = 0.73, p < 0.01). Similar

linear relationships were seen in correlations between abd-

SaO2 and airflow or visual scoring data (Table III).

TABLE III: Correlation of Chest and Abdominal Motion

With Airflow Parameters and OSA Severity Index1

r-value p-value

Chest and Abdominal Motion with Airflow

MSC Chest-SaO2 vs. MSC CTC-SaO2 0.83 <0.01**
MSC Abd-SaO2 vs. MSC CTC-SaO2 0.79 <0.01**
Chest and Abdominal Motion with OAHI

MSC Chest-SaO2 vs. OAHI 0.73 <0.01**
MSC Abd-SaO2 vs. OAHI 0.67 <0.01**

1 Linear correlations of magnitude squared coherence (MSC) parame-
ters. CTC: Airflow signal; OAHI: obstructive apnea-hypopnea index;
r-value: Pearson correlation coefficient.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

The most important finding of this study was that the use

of robust magnitude squared coherence (MSC) analysis of

thoraco-abdominal signals and oxymetry successfully identi-

fied a sleep-apnea spectral signature. The main feature con-

sists on a sharp Low-Frequency Peak of Amplitude (LF-PA),

indicative of OSA cycles. Moreover, this spectral parameter

identified by MSC analysis of thoraco-abdominal signals

correlated with airflow parameters (CTC-SaO2 analysis)

and OSA severity (OAHI) in standard PSG visual scoring.

This spectral OSA feature is airflow independent, which is

important for the design of novel devices to detect OSA,

given that nasal-oral airflow sensors are often uncomfortable

and prone to signal artifacts. Conversely, thoraco-abdominal

motion sensors are usually well-tolerated and are part of

standard cardio-respiratory monitoring in ambulatory and in-

hospital settings. Further research should aim to implement

the present findings in the design of simplified tools for

screening, diagnosis and monitoring of OSA, based only on

oximetry and abdominal or chest motion sensors.
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