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Abstract— The presence of respiratory information within
the electrocardiogram (ECG) signal is a well-documented
phenomenon. We present a Gaussian process framework for
the estimation of respiratory rate from the different sources
of modulation in a single-lead ECG. We propose a periodic
covariance function to model the frequency- and amplitude-
modulation time series derived from the ECG, where the hy-
perparameters of the process are used to derive the respiratory
rate. The approach is evaluated using data taken from 40
healthy subjects each with 2 hours of monitoring, containing
ECG and respiration waveforms. Results indicate that the
accuracy of our proposed method is comparable with that
of existing methods, but with the advantages of a principled
probabilistic approach, including the direct quantification of
the uncertainty in the estimation.

Index Terms—Respiratory rate, Gaussian processes.

I. INTRODUCTION

Respiratory rate has been shown to be an important
indicator of patient deterioration [1], [2], and extreme values
of respiratory rate are associated with an increased risk of
adverse events in hosptial patients [1], [2], [3]. The impor-
tance of assessing respiratory rate has led to its inclusion
in most numerical patient assessment systems, often termed
early warning scores or EWS [4], the use of which is
widespread. Such systems typically consist of the application
of univariate scoring criteria to observational physiological
variables (including the vital signs) and produce a cumulative
score that can, if it exceeds a predefined threshold, lead
to identification of physiological deterioration in acutely-ill
hospital patients.

While automated techniques exist for measuring respira-
tory rate, they usually require the use of equipment which
might interfere with natural breathing, such as spirometry, or
might be uncomfortable for the patient, such as measurement
via a band that encircles the chest. The signals acquired from
conventional methods, including impedance plethysmogra-
phy (IP), are often unusable as a result of a poor signal-to-
noise ratio and are sensitive to frequent movement artefact
[5].

The ECG signal, recorded for most acutely ill patients, has
been considered as a source of potentially reliable respiratory
information. Respiratory activity may cause the ECG to
be modulated in two fundamental ways: R-peak amplitude
(RPA) modulation, which is caused by the movement of the
chest due to the filling and emptying of the lungs (which in
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turn causes a rotation of the electrical axis of the heart and
the consequent modulation of the amplitude of the ECG)
[6], and respiratory sinus arrhythmia (RSA), which is a
frequency modulation, corresponding to a variation in heart
rate that occurs throughout the respiratory cycle [6], [7].

Much previous work exists concerning the estimation of
respiratory rate from ECG or other signals, such as the
photoplethysmogram or PPG, and the arterial blood pressure
waveform or ABP [8]. These approaches are based on either
the RPA- or RSA-modulated signals (or a combination of
both), and use a variety of algorithms based on spectral
analysis [9], the continuous wavelet transform [10], neural
networks [11], and autoregressive models [12], [13]. Small
errors (around 1 to 2 breaths per minute) between estimates
derived from these signals and reference respiratory rate
values have been reported [9], [12], [13] for studies of
healthy volunteers. The main drawback of these approaches,
however, is that they provide a point estimate of the respi-
ratory rate. The uncertainty associated with the estimated
value cannot be directly quantified, due to the nature of
the algorithms employed. The failure of existing methods to
estimate respiratory rate accurately in actual patients, rather
than healthy volunteers, motivates the probabilistic approach.

We propose a method that uses the framework of Gaussian
process (GP) regression to extract respiratory rate from the
different sources of modulation in a single-lead ECG. This
brings all of the advantages of a principled, probabilistic
approach: our uncertainty in the estimation is directly quan-
tified; incompleteness, noise, and artefact may be handled in
a robust manner; and the output may consist of a predictive
posterior distribution, rather than a single estimate - this
is useful if the estimate of the respiratory rate is to be
used as the input to a subsequent probabilistic inference
system, where knowing the full distribution of the input is
more informative than a point estimate. Finally, due to the
generative nature of the approach, it is possible to generate
data from the model, which can be useful for estimating the
behaviour of the respiratory rate during periods of missing
data.

II. METHODOLOGY

For the preliminary analysis described in this paper, we
tested our method using the Physiobank/Physionet Fantasia
database [14], [15]. The latter consists of data acquired from
two subgroups of volunteers: 20 “young” (21 - 34 years
old) and 20 “elderly” (60 - 85 years old) healthy subjects
who underwent 120 minutes of continuous supine rest (while
watching the film “Fantasia”). Continuous single-lead ECG
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and respiration (IP) signals were collected. Each subgroup
of subjects includes equal numbers of men and women.

Respiratory rate was computed using methods to be de-
scribed later, with windows of data of 1 minute duration,
with successive windows having 50 s overlap (i.e., a new
estimate is produced every 10 s).

A. Extracting the respiratory waveforms

ECG beat detection was performed using the Hamilton
and Tompkins algorithm [16]. The amplitude of the resulting
series of R-peaks was determined in order to derive the
RPA waveform. The intervals between successive R-peaks
were also calculated to derive the R-R time series, which
corresponds to the RSA waveform.

B. Calculation of respiratory rate from the RPA and RSA
waveforms

1) Proposed method: The proposed approach to extract
respiratory rate from the RPA and RSA waveforms is based
on Gaussian process regression. This offers a framework for
performing inference using time-series data, in which a prob-
ability distribution over a functional space is constructed. We
consider the RPA and RSA waveforms to be two separate
functions, from which we can perform inference using the
GP framework. Our approach is particularly suited to the
analysis of data that may be sampled at irregular intervals,
as with the R-peaks and R-R intervals contained in the RPA
and RSA waveforms, respectively.

The GP is a stochastic process [17] that expresses a
dependent variable y in terms of an independent variable x,
via a latent function f(x). This function can be interpreted
as being a probability distribution over functions,

y = f(x) ∼ GP (m(x), k(x,x′)) (1)

where m(x) is the mean function of the distribution and k is
a covariance function which describes the coupling between
two values of the independent variable as a function of
the (kernel) distance between them. The covariance function
encodes our assumptions concerning the structure of the time
series that we wish to model [17]. Valid covariance functions
can take a variety of forms, with the constraint that they are
positive semi-definite.

In the case considered by this paper, x,y will be the
times of the observations and the values of the observations,
respectively, comprising univariate pairs (x, y). Denoting
r = ‖ xp − xq ‖ as the (Euclidean) distance between two
independent variables, xp and xq , we propose a periodic
covariance function:

k(r) = σ2
0 exp

[
− sin2((2π/PL)r)

2λ2

]
(2)

in which the hyperparameters σ0 and λ give the amplitude
and length-scale of the latent function. PL is the length
of the period and is the key parameter for estimation of
the respiratory rate. Selection of k represents our prior
knowledge of typical waveforms from which respiration may
be derived, which are expected to be periodic, and where

the period can be related to the respiratory rate. We assume
that the observations are corrupted by additive i.i.d. Gaussian
noise with variance component ε2. Thus, the full covariance
function is given by

V (xp, xq) = k(xp, xq) + ε2δ
(
‖ xp − xq ‖

)
(3)

where δ is the Kronecker delta, for which δ = 1 if p = q, and
δ = 0 otherwise. Here, ε is the noise variance. The values of
the hyperparameters are learned from univariate respiration
waveforms which consist of n observations, D = {(xi, yi) |
i = 1, ..., n}. The xi and yi points represent the independent
and dependent variable values respectively.

The natue of the GP is such that, conditional on observed
data, predictions can be made about the function values
f(x∗) at any (“test”) location of the index set x∗. The
distribution of the values of f at point x∗ is Gaussian, with
mean and covariance given by

f∗|x∗,x,y ∼ N
(
f∗, V ar[f∗]

)
(4)

in which x,y are the “training data”, D.
The above allows us to determine the following predictive

equations for GP regression, for which we assume the mean
function m to be zero,

f∗ = m(x∗)+k(x∗, x∗)
>V(x,x)−1

(
y−m(x)

)
(5)

V ar[f∗] = k(x∗, x∗)−k(x, x∗)>V(x,x)−1k(x, x∗) (6)

In the above, we use boldface terms k,V to refer to the
matrix equivalents of k, V defined earlier. For the purposes of
this investigation, empirical selection of suitable prior values
of the hyperparameters was σ0 = 1, λ = 1, and ε = 0.01.
For the period PL, a set of appropriate priors was selected
PL = (1.5...10), which corresponds to plausible respiratory
rate values of 6 to 40 breaths per minute.

A full Bayesian treatment of GP regression requires in-
tegration over the posterior distribution of the hyperparam-
eters. Even though most calculations in the GP regression
framework are analytically tractable, the integral over the
posterior of the hyperparameters often is not. The integration
over the posterior of the hyperparameters p(θ|D), with
θ = {σ0, λ, PL, ε}, can be approximated by a point via the
maximum a posteriori (MAP) estimate

θ̂ = argmax
θ
p(θ|D) (7)

= argmin
θ

[
− log p(D|θ)− log p(θ)

]
(8)

In this approximation, the distribution over the hyperpa-
rameters is assigned a point mass at the mode of the posterior,
allowing the marginal distribution of the latent function to
be approximated by p(f |D) ≈ p(f |D, θ̂). This approach is
computationally attractive. The grid search approximation
to the full integral over the posterior distributions of the
hyperparameters follows the work of Rue et al. [18], in which
the posterior mode θ̂ is first located by maximising the log-
posterior distribution log p(θ|y), and the shape of the log-
posterior is approximated with a Gaussian, the covariance
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of which is the inverse of the negative Hessian at the mode
(more details may be found in [17], [18]).

For the work described in this paper, for each 60 s window,
we first normalise the RPA and RSA time series using a zero-
mean, unit-variance transformation. A Gaussian process is
then fitted to each of the waveforms, using the procedure
described above to obtain an estimate of both the value and
uncertainty of the respiratory rate value (directly from the
distribution over the period, PL). The estimate with lower
uncertainty (i.e., where the posterior distribution had lowest
variance) was chosen as the final estimate of the respiratory
rate for that window.

2) Autoregressive model: The performance of our pro-
posed method was compared to that of the autoregressive
model, a parametric spectral analysis technique that has
been successively applied to this problem [12], [13]. This
method requires equi-spaced samples, and so the time series
of R-R intervals and R-peaks were resampled at 4 Hz, and
the RPA and RSA waveforms were obtained using linear
interpolation. Each of the waveforms was then filtered using
an FIR band-pass filter with cut-off frequencies of 0.1 and
0.6 Hz (equivalent to respiratory rates of 6-36 breaths per
min). Following previous methods, the steps involved in
estimating respiratory rates are as follows for each of the
RPA and RSA waveforms: (i) fit an AR model to each
60 s window of resampled data; (ii) reject all poles with
frequencies corresponding to respiratory rates outside the
range of physiologically-plausible values (6-36 breaths per
min); (iii) keep all poles with magnitude of at least 95%
of the remaining highest-magnitude pole; and (iv) select the
pole remaining that has the smallest angle. The frequency
associated with this pole is the estimate of respiratory rate
for this waveform. Finally, the respiratory rate corresponding
to the pole with the highest magnitude (extracted from the
two waveforms) was selected as the final respiratory rate for
that window.

C. Reference respiratory rate

We calculated the reference respiratory rate from the
IP signal in the database using both an extrema detection
algorithm and an AR-based method [13]. With the latter, we
down-sampled the respiration signal to 4 Hz, after applying
an anti-aliasing filter, and then applied a 0.1-0.6 Hz FIR
band-pass filter. We then fitted the resulting waveform to
an AR model and identified the respiratory pole using the
same method as described in the previous section. Only
those reference waveforms for which the agreement between
both extrema- and AR-based estimates was within 3 breaths
per min were retained (”valid windows”). As a result, 72%
of the available windows were deemed to be ”valid”. This
approach ensures only the highest quality reference values
are considered by potentially eliminating regions of low IP
quality.

III. RESULTS AND DISCUSSION

Over the entire database, the mean reference respiratory
rate was 18.3±2.9 breaths per min (17.9±2.8 for the young

Fig. 1. Extraction of respiratory rate from single-lead ECG. (a) ECG
signal; (b) Reference (IP) respiration signal; (c) RSA waveform from the
R-R intervals time series; (d) RPA waveform from the R-peaks time series;
(e) Final respiratory rate estimates from the AR and GP-based methods.

subjects and 18.8± 3.0 for the elderly subjects).
Figure 1 shows an example from a 1-minute window of

data. In general, as illustrated in the figure, we observe
that the values extracted using the AR method and the
proposed GP method are close to the corresponding reference
respiratory rate. However, using the GP-based approach, we
can explicitly quantify our uncertainty in the estimated value
by computing the variance of the posterior distribution drawn
from the related period length parameter (PL) of the GP.
The uncertainty of an estimate may be due to the presence
of noise in the derived respiration waveform (which in turn
may be caused by a bad performance of the beat detector),
which precludes an accurate estimation of the respiratory
rate. In such cases, the precision (inverse of the variance) of
the estimate is very low.

The performances of the AR and proposed methods were
assessed by calculating the mean absolute error (MAE) in
breaths per min, MAE = 1

n

∑n
i=1 | ŷi − yref,i |, where n

is the number of valid windows over the entire database of
both groups (young and elderly subjects), ŷi is the estimated
respiratory rate (mean posterior value in the case of the GP-
based method) and yref,i is the reference respiratory rate for
window i. Table I shows MAE for different ranges of respi-
ratory rates. While both methods show similar performance,
both performed better for the young group of patients. As the
respiratory rate increases (or decreases), the estimation errors
also increase. Crucially, we note that the proposed method
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Fig. 2. Histograms showing the percentage of windows for different ranges
of the percentage error E (X-axis). The shaded area shows the cumulative
percentage of data.

is more accurate for higher respiration rates in the elderly,
which is the typical target population.

To assess further the performance of our proposed method,
we calculated the percentage of valid windows for different
ranges of the percentage error (see Figure 2), which is given
by E = MAE

|µref |×100, where µref is the mean of the reference
respiratory rates over each of the two patient groups. This
is a useful metric since the significance of MAE is different
depending on the actual respiratory rate. We note that both
methods perform similarly.

IV. CONCLUSION

We have proposed a novel probabilistic approach for
extracting respiratory rate from time-series sensor data using
Gaussian processes. The method is able to give not only a
point estimate of the breathing rate, but, for the first time,
a measure of uncertainty of the estimate. By applying this
technique to a database of 40 healthy subjects, we have
demonstrated that it is possible to match the performance
of the existing state-of-the-art, while bringing the benefits of
a probabilistic framework.

Open-source code implementing this work may be ob-
tained from http://www.robots.ox.ac.uk/∼davidc.
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