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Abstract— Early acidosis detection and asphyxia prediction in
intrapartum fetal heart rate is of major concern. This contribu-
tion aims at assessing the potential of the Scattering Transform
to characterize intrapartum fetal heart rate. Elaborating on
discrete wavelet transform, the Scattering Transform performs
a non linear and multiscale analysis, thus probing not only
the covariance structure of data but also the full dependence
structure. Applied to a real database constructed by a French
public academic hospital, the Scattering Transform is shown to
catch relevant features of intrapartum fetal heart rate time
dynamics and to have a satisfactory ability to discriminate
Normal subjects from Abnormal.

I. MOTIVATION, RELATED WORKS AND CONTRIBUTIONS

Context: Intrapartum fetal surveillance. Electronic fetal

surveillance during labor aims at predicting asphyxia and

thus at the reduction of subsequent fetal and neonatal mortal-

ity and morbidity. In clinical routine, electronic surveillance

is based on monitoring cardiotocogram (CTG), i.e., fetal

heart rate (FHR) and uterine contractions [1]. CTG is as-

sessed by obstetricians according to FIGO guidelines, which

are mostly based on temporal features (baseline estimation,

long-term variability, accelerations and decelerations). It is

considered that abnormal CTG may suggest deterioration of

fetal well-being and requires rapid action by obstetricians

(e.g., operative delivery). While CTG monitoring enables

detection of intrapartum acidosis with high sensitivity, strict

adherence to FIGO rules leads to unnecessary operative

delivery decisions for a large number of cases where post-

birth exams indicate non-stressed newborns [2]. Reducing

the False Positive rate thus constitutes a significant public

health stake, as operative deliveries may come with severe

immediate or later consequences for both the mother and/or

the newborn. In that context, FHR time series analysis be-

yond FIGO criteria has aroused considerable research efforts

(e.g. [3]).

Related works: Intrapartum fetal heart rate charac-

terization. Following the seminal work in [4] for adult

heart rate characterization, and aiming at going beyond

FIGO static temporal and global patterns description by

taking into account temporal dynamics (correlations in time),

spectral analysis has been massively used for the analysis of

intrapartum FHR (e.g., [5]). Essentially, it relies on splitting
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the spectrum into frequency bands and measuring the respec-

tive amounts of energy in each band. Spectrum estimation

for intrapartum FHR however suffers from two important

shortcomings: Intrapartum FHR appears much less stationary

than adult heart rate does, because of significant baseline

variations, the occurrence of decelerations, and, foremost, the

frequency band split is lead by well documented respiratory

and autonomous nervous system regulation mechanisms in

adults, that are both immature and not well document for

intrapartum FHR. To avoid the band splitting issue, the

paradigm of scale invariance (self-similarity, long memory),

has been put forward, that essentially states that all frequen-

cies (or scales) are equally contributing to time dynamics.

This naturally leads to the use of multiscale (or wavelet-

based) analysis. Wavelet analysis, which can also be read as

a time-varying representation of data, explicitly addresses the

non-stationarity issue and have thus been significantly used

to study intrapartum FHR [6], [7], [8], [9].

Because intrapartum FHR time series display significant

departures from Gaussianity, it has also been pointed out

that it can be fruitful to go beyond second order statistical

analysis (correlation, spectrum estimation). This has been

envisaged along two very different directions: Either via

the estimation of entropy rates, which combines temporal

dynamic to joint probability analyses [10]; or via multifractal

analysis that characterizes temporal dynamics fluctuations

from a large range of (both positive and negative) statistical

orders [6], [7], [8], [9], [11]. Both approaches suffer from

severe difficulties in the estimation of joint distributions or

of higher moments.

Goals and Contributions. In that context, the present

contribution aims at exploring the potential of a recently

introduced non linear time series analysis tool, referred to as

Scattering Transform. [12]. A scattering transform is a non-

linear multiscale transform which was shown to be highly

effective to classify audio signals, image textures, and to

analyze multifractal properties [13], [14]. It computes high

order statistical information by iterating on wavelet trans-

forms, as explained in Section II. A database of intrapartum

FHR, described in Section III, has been constructed by obste-

tricians, from selection in a large CTG database collected at

Femme-Mère-Enfant (Woman-Mother-Child) academic Hos-

pital (HFME), in Lyon France. It contains (15) subjects with

abnormal outcomes whose CTG where (correctly) classified

by FIGO rules to Abnormal, and (30) subjects with normal

outcomes, whose CTG classified by FIGO rules either (cor-

rectly) to normal (15 subjects) or (incorrectly) to abnormal

(15 subjects). Using this database, the benefits and potentials
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of scattering transforms for intrapartum FHR characterization

are explored in details in Section IV, with emphasis on the

analysis of the potential reduction of the False Positive rate.

II. SCATTERING TRANSFORM

A scattering transform iteratively computes the modulus

of complex dyadic wavelet transforms [12]. Let X(t) denote

the time series to analyze. A complex wavelet ψ(t) is a band-

pass filter, supported over positive frequencies. Let ψj(t) =
2−jψ(2−jt) be the dilation of ψ by 2j . A complex dyadic

wavelet transform computes the convolution X ⋆ψj(t) at all

scales 2j and at all times t.
First order scattering coefficients are defined as the time

average of wavelet coefficient modulus:

SX(j1) = 2−J

2J∑

t=1

|X ⋆ ψj1(t)| . (1)

where 2J is the signal size. The SX(j1) are computed up

to a coarsest scale jm < J : 1 ≤ j1 ≤ jm.

The information lost by averaging |X ⋆ ψj1 | is recovered

by computing its wavelet coefficients {|X ⋆ψj1 | ⋆ψj2(t)}j2 .

The amplitude of these new coefficients is averaged in time

at all scales 2j2 , such that: 2jm ≥ 2j2 > 2j1 , and normalized

by first order coefficients (1), which defines the second order

scattering coefficients:

SX(j1, j2) =

∑2J

t=1 ||X ⋆ ψj1 | ⋆ ψj2(t)|∑2J

t=1 |X ⋆ ψj1(t)|
. (2)

Since 2jm ≥ 2j2 > 2j1 ≥ 1, there are jm first order

coefficients SX(j1) and jm(jm−1)/2 second order scatter-

ing coefficients SX(j1, j2). A scattering transform computes

coefficients of any order m by averaging in time the values

of m successive wavelet convolutions and modulus [12].

In this study, we concentrate on first and second order

scattering coefficients which carry the most important signal

information for classification and scaling analysis [14], [13].

If X(t) is a realization of a scaling process, then averaging

several realizations of SX(j1) computes an expected values

which can be shown to decay like 2j1H where H is the Hurst

exponent measuring long range second order correlations.

In this case, one can also prove [14] that averaging several

realizations of SX(j1, j2) yields a function that only depends

upon j1 − j2 and which decays like 2(j1−j2)z , where this

second exponent z depends upon the scaling properties of

higher order moments of X . It characterizes non-Gaussian

behavior and discriminates different types of multiscale pro-

cesses. In the following, we shall see that it provides relevant

information to characterize FHR status.

III. DATABASE

Data Collection. Intrapartum CTG has been routinely

monitored at HFME for more than 30 years, continuously

for fetus with initial intermediate FHR during labor or with

high risk of fetal asphyxia (post-date delivery, intra-uterine

growth restriction, diabetes). CTG is currently aquired using

scalp electrode STAN 21 or 31 systems, 12bit resolution,

500Hz sampling rate, (STAN, Neoventa Medical, Moelndal,

Sweden), that outputs lists of R-peak occurrence in ms

{tn}n=1,...,N . Umbilical cord artery acid-base status was also

systematically recorded for each newborn, with obstetrician

annotations motivating the decision for operative delivery.

Labor and delivery were completed according to the STAN

clinical guidelines.

Database. Subjects have been carefully selected by a

referent obstetrician to create a database representative of

typically observed CTGs and umbilical cord pH describing

fetal acid-status just before delivery. They were grouped into

3 classes:

i) FIGO-TN: 15 fetuses with normal fetal outcome (defined

as Apgar score of 10 at 5 minutes of life and arterial cord

pH > 7.30, hence non-acidotic thus healthy) and CTG

classified as normal – True Negatives (TN);

ii) FIGO-TP: 15 fetuses with respiratory fetal acidosis

(umbilical arterial pH < 7.05, hence abnormal) and CTG

classified as abnormal (hence correctly diagnosing fetal-state

as abnormal) – True Positives (TP);

iii) FIGO-FP: 15 fetuses with normal fetal outcome (Apgar

score of 10, arterial cord pH > 7.30, hence healthy), yet with

abnormal CTG (hence incorrectly diagnosed as abnormal) –

False Positives (FP).

Preprocessing. As often done in intrapartum FHR char-

acterization [15], [16], the lists of R-peaks were trans-

formed into regularly sampled beat-per-minute (bpm) time

series, X(t), by linear interpolation of the measurements

{(tn/1000, 60000/(tn+1− tn))}n=1,...,N . The sampling fre-

quency was set to fs = 8 Hz, FHR can be checked to carry

no significant information beyond 3 to 4Hz. Interpolation

at higher fs has been observed to yield no improvement in

classification.

IV. SCATTERING OF INTRAPARTUM FETAL HR

Fig. 1. Average of log2 SXc(j1) versus j1 (a) and of log2 SXc(j1, j2)
versus j2 − j1, for j1 = 1 (b), j1 = 2 (c), j1 = 3 (d), computed over 15
realizations for each c = FIGO-TN, FIGO-TP, FIGO-FP. Thick error bars
corresponds to ±1 standard deviation, measured within classes, while the
thin error bars corresponds to the extreme observations within each class.
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TABLE I

CORRELATION BETWEEN SCALING EXPONENTS.

C ĤS
c , H

L
c ĤS

c , ẑc(1) ĤS
c , ẑc(2) ĤS

c , ẑc(3)

FIGO-TP ρ = 0.96 ρ = 0.73 ρ = 0.57 ρ = −0.13
FIGO-FP ρ = 0.87 ρ = 0.57 ρ = 0.01 ρ = 0.25
FIGO-TN ρ = 0.83 ρ = 0.66 ρ = 0.77 ρ = 0.66

TABLE II

RANKSUM TESTS: P-VALUES

c Ĥc ẑc(1) ẑc(2) ẑc(3)

TP/TN 0.00 0.00 0.00 0.02
TP/FP 0.00 0.01 0.01 0.09
FP/TN 0.02 0.17 0.25 0.15

Analysis parameters. To assess the ability of scattering

to characterize acidosis, the present study concentrates, for

each of the 3 × 15 subjects, on the last 30-minute before

delivery, corresponding to 2J samples. Scattering coefficients

are computed, using a complex cubic spline wavelets [12],

at scales 2j1 and 2j2 , 1 ≤ j1 < j2 ≤ jm < J , where

2jm = 211 corresponds to 211/Fs = 256s ≈ 4 min,

considered as a typical time analysis unit by obstetricians

and as a satisfactory trade-off between time resolution and

stability in estimation. There are thus jm = 11 first order

coefficients SX(j1) and jm(jm − 1)/2 = 55 second order

coefficients SX(j1, j2).
The set of signals of each class c = FIGO-TN, FIGO-TP,

FIGO-FP are considered realizations of a random process

Xc(t). Fig. 1 displays averages of SXc(j1) and SXc(j1, j2)
across each of the classes c, in log-log coordinates, by

analogy to scale invariance analysis.

Scaling Analysis. Fig. 1 (a) shows that for each of the 3

classes, the averages of SXc(j1) behave as SXc(j1) ∼ 2j1Hc

for 2 ≤ j1 ≤ 10, where Hc denotes the Hurst exponent for

class c. It also shows, (b), (c) and (d), that SXc(j1, j2) ≃
2(j2−j1)zc(j1), for 3 ≤ j2 − j1 ≤ 8. It correspond to

time scales ranging from 2j1/fs × 23 to 2j1/fs × 28. For

example, with j1 = 2, scaling exists in the range 4 to 128s,

thus matching the scaling range observed for averages of

SXc(j1). This suggests to compute, by means on linear

regression, for the FHR times series of each subject of the

3 classes, the estimates ĤS
c and ẑc(j1) for j1 = 1, . . . jm.

For the same data and under same conditions, the Hurst

exponents has also been estimated with the wavelet-Leader

multifractal analysis tool detailed in [6]): ĤL
c . Estimates ĤS

c

and ĤL
c show high correlation coefficients (cf. Table I, first

column) and are found consistently to take values above

0.8 for all 3 classes, thus showing significant long range

correlations. This corroborates the analysis already reported

on this same database in [7], [8], [9].

As can also be seen in Table I, columns 2 to 4, correlation

coefficients between ĤS
c and ẑc(j1) are low, thus indicating

clearly that the SXc(j1, j2) conveys information related to

high order dependence structure of intrapartum FHR that are

not provided by the first order SXc(j1), which only depends

upon the covariance and hence upon second order moments.

The analysis reported above shows that the scaling ex-

ponents Ĥc and ẑc(j1) measured for each subject indepen-

dently, are robust features, probing the scaling properties of

the dependence structure of intrapartum FHR time series,

and thus extending the Hurst parameter related to scaling of

the sole covariance structure.

Intrapartum FHR classification. Fig. 1 also indicates

that the scattering coefficients of Class FIGO-FP tend to be

closer to that of Class FIGO-TN than to that of Class FIGO-

TP, a much desired property that tend to suggest that scaling

exponents Ĥc and ẑc(j1) may help in Intrapartum FHR clas-

sification. To quantify that observation, boxplots for ĤS
c and

ẑc(j1 = 2) are shown in Fig. 2 (a) and (b), complemented

with Table II that reports the p-values of Wilcoxon rank sum

tests, aiming at rejecting equality in mean for the ĤS
c and

ẑc(j1) for different pairs of classes. Boxplots and p-values

clearly indicates that, for any estimated scaling exponents,

Class FIGO-FP resembles more to Class FIGO-TN than to

Class FIGO-TP.

Experimentally, it is found that, amongst the second order

scaling exponents ẑc(j1), j1 = 2 yield the best classification

(showing the larger p-value for the pair FIGO-TN/FIGO-FP

with low p-value for the pair FIGO-TP/FIGO-FP). Therefore,

Fig. 2 (bottom left) displays the scatter plot ĤS
c versus ẑc(2),

for all subjects of the 3 classes: It clearly shows that Class

FIGO-TP lives in the top right corner while Class FIGO-

TN seats in the bottom left corner. A significant number of

FIGO-FP subjects stand close to Class FIGO-TN subjects.

For classification performance evaluation, given the small

number of subjects within each class, the recourse to ad-

vanced classification schemes (such as SVM, Logistic Re-

gression or PCA based procedures) fed by the vectors of

features ĤS
c and ẑc(j1) for each class, appears inappro-

priate. Instead, for this case study analysis, classification

performance are quantified in the ĤS
c versus ẑc(2) plot,

by considering that the Abnormal domain has a shape

arbitrarily chosen to be a rectangle. Thus, varying the shape

and size of the upper right rectangular Abnormal domain

permits to obtain the ROC Curve reported in Fig. 2 (bottom

right). It quantifies classification performance in terms of the

probability pD of correct detection, or sensitivity, of Abnor-

mal subjects (corresponding to Class FIGO-TP) against the

probability of False Alarms, pFA, on incorrect detection of

Normal subjects, or 1−specificity, (corresponding to Classes

FIGO-TN and FIGO-FP). This ROC Curve indicates very

satisfactory performance: The curve lives close to the upper

left corner (the Golden standard); The most difficult case

(pD = 1, i.e., all Abnormal subjects are detected - a stringent

requirement of clinicians) yields a pFA = 0.26, which

already significantly outperforms the pFA = 0.50 obtained

from FIGO-rules for the same database.

V. CONCLUSIONS AND FUTURE WORKS

In the present contribution, it has been shown that the joint

use of of only two scattering features ĤS
c and ẑc(j1) achieves

a satisfactory characterization of intrapartum FHR and effi-

cient discrimination between Normal and Abnormal subjects.
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Fig. 2. Classification Performance. Box plots (top row) for ĤS
c (a) and

ẑc(j1 = 2) (b). Within each boxplots, Classes are from left to right: FIGO-
TP, FIGO-FP, FIGO-TN. Scatter plot (c) of all subjects of the 3 classes for

in the ĤS
c versus ẑc(j1 = 2) domain and corresponding ROC Curve (d).

These features that consist of scaling exponents, measured

from the scattering coefficients SX(j1) and SX(j1, j2), thus

confirm that scaling is a central property enabling to char-

acterize intrapartum FHR time dynamics and enrich scaling

analysis: While first order scattering coefficients essentially

permits to measure Hurst exponent, second order coefficients

significantly enrich scaling analysis by enabling to quantify

scaling behaviors in the full dependence structure.

The results obtained from this small-size database are

promising. Further we are planning to develop this work

along different lines. First, as can be seen in Fig. 2 (bottom

right), a number of Normal subjects remain misclassified.

Comparisons against other features (FIGO-based; entropy-

based [10]; multifractal-based [9]) will be undertaken to see

whether, besides overall classification performance, the mis-

classified subjects are always the same or differ, when using

different types of features. Additionally mis-classifications

related to specific types of features will be correlated to

obstetricians annotations, to establish sub-classes of false

positives. Concentrating on the FIGO-FP subjects that are

not correctly classified using the scattering, might help to

figure out what property can actually discriminate the time

dynamics of such cases from that of actually Abnormal sub-

jects and to assess the role of decelerations in the difficulty

to correctly classify them. Second, instead of focusing on the

last 30 minutes before delivery, the Scattering Coefficients

will be computed along time, within sliding windows of

duration of 10 to 20 minutes. The optimal duration will

be studied in a systematic manner as the outcome of the

following trade-off: Obstetricians seek for shorter decision

time, but too short time window yields poorer estimation

and thus poorer classification performance. Third, the infor-

mation measured by the jm first order coefficients S(j1) and

jm(jm − 1)/2 second order coefficients S(j2) have been

so far summarized into the sole scaling exponents ĤS
c and

ẑc(j1), so that classification can be achieved by the joint

thresholding of those quantities, with no a priori reference

to a training set. We will however also study the whole set of

scattering coefficients as features used to feed more advanced

classification procedures. Fourth, scattering will be applied to

the classification of a very large database (∼ 4000 subjects)

being currently gathered at HFME, Lyon. In that context, the

small-size database studied here, will be considered as the

training set for the classification of the much larger database

and more advanced classification procedure will be used.
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