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Abstract— Long-term neurophysiological recordings, such as
scalp encephalograms (EEG), have been routinely used in
studies that aim to characterize dynamic changes in brain
activity associated with normal biological processes, such as
sleep, but are also becoming increasingly common for clinical
evaluation of patients with neurological disorders, such as
epilepsy. Analysis of non-stationary recordings from multiple
days poses new signal processing challenges, in regard to
algorithm efficiency and computational cost, as well as adequate
dimensionality data reduction. We compared four approaches
for estimating the underlying temporal dynamics of long-term
recordings from patients with medically refractory epilepsy: (i)
model order selection using the minimum description length
principle, (ii) approximate entropy, (iii) mutual information,
and (iv) Detrended Fluctuation Analysis (DFA). Individual
approaches were found to be sensitive only to specific scales
of variation. Approximate entropy and mutual information
were sensitive to local dynamics, whereas dynamic model order
estimation captured only slowly varying dynamics. DFA was
sensitive to multiple temporal scales.

I. INTRODUCTION

Improvement in technologies for data collection and stor-

age, and emergence of novel algorithms for computationally

efficient data analysis, including dimensionality reduction

and compressed sensing, have allowed the generation and

analysis of very large datasets. Long-term monitoring of

physiological processes have provided important insights

into human health and disease. For example, long-term

monitoring of brain activity during human sleep has provided

fundamental information of the neural correlates of sleep,

wakefulness and the transition between the two processes

[1]. Continuous recordings in patients with neurological dis-

orders, such as epilepsy, are becoming increasingly common

for diagnostic purposes and decisions for further clinical

care. For example, epilepsy patients often undergo long-term

non-invasive electrophysiological studies, in order to assess

their candidacy for surgical resection of their seizure focus,

and determine if further invasive studies are necessary for

precise localization of the epileptogenic tissue.

Analysis of high-dimensional data poses a number of

challenges. Dimensionality reduction, particularly in the time

domain, and data compression are necessary for reducing the
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computational cost associated with processing large volumes

of data. However, the structure of these data, i.e., the under-

lying temporal scales of variability are not a priori known,

and need to be estimated directly from the data. Furthermore,

although some physiological processes are associated with

robust and regular patterns of dynamic variability, such

as different stages of sleep, abnormal electrophysiological

events, such as seizures, may cause irregularly varying neural

dynamics, e.g., rapidly varying during ictal epochs versus

slowly varying during interictal periods. In order to pre-

serve multi-scale information (in the time domain) encoded

in the data, adaptive compression/dimensionality reduction

approaches are necessary [2].

A wide range of approaches have been proposed for es-

timating the underlying temporal structure of electrophysio-

logical signals, such as electroencephalograms (EEG). These

range from signal complexity-based approaches to correla-

tion methods and model-order estimation, e.g. [3], [4], [5],

[6], among many others. All have advantages and drawbacks,

depending on the application and research question. For

example, model-order estimation, e.g., for AR modeling, is

often used as a measure of data complexity. It relies on the

existence of temporal patterns in the data identified from the

autocorrelation function. In cases of noisy signals or epochs

of increased noise, the low model order may be misleading

if data complexity is of interest. For example, white noise,

although intuitively a complex signal corresponds to a zeroth

order AR process. Nevertheless, if one is only interested in

relative changes from an epoch of longer local correlations in

time (high-order AR process), to an epoch of lower temporal

correlation or even sample independence (lower-order AR

process), model-order estimation may be used to detect

such transitions. For that purpose, the Minimum Description

Length (MDL) principle may be used [9]. In addition, various

entropy-based approaches have been proposed, to quantify

either transient non-linearities (chaos) in the data, e.g., the

Kolmogorov-Sinai entropy, or uncertainty and randomness

in e.g., approximate entropy [3]. Entropy-based methods

that aim to identify a chaotic structure in the data, make

an a priori assumption of at least transient non-linearity.

Finally, methods such as Detrended Fluctuation Analysis

(DFA) estimate the underlying scale of self-similarity in non-

stationary signals, and are useful for detecting scales of long-

range, power-law correlations in these signals [7].

This study aimed to estimate the underlying temporal dy-

namics of long-term scalp EEG recordings from patients with

epilepsy, and thus identify relevant scales of data segmenta-

tion and analysis. Four methods were compared, model-order
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selection using the MDL principle, approximate entropy,

mutual information and DFA. As we were solely interested

in the estimation of these time scales, and thus breakpoints

between intervals of increased randomness or higher local

correlation in the time domain, rather than characterization

of the data complexity, these methods were selected based

on their limited number of a priori assumptions on the data

characteristics. Note that model order selection, approximate

entropy and DFA were estimated from individual signals,

whereas mutual information was estimated from signal pairs.

II. METHODS

A. EEG data

1) Data collection: All continuous EEGs were recorded

in the Clinical Neurophysiology Laboratory of the Compre-

hensive Epilepsy Center at Beth Israel Deaconess Medical

Center. A standard international 10-20 clinical EEG system

was used. All recordings were part of inpatient, long-term

electrophysiology studies for patient evaluation and mon-

itoring, and typically spanned several days. Signals were

sampled at 500 samples/s and were referenced to a common

average reference.

2) EEG preprocessing: Power-line noise was attenuated

with a stopband filterbank, centered at the 60 Hz harmonics

of the noise, in the range 60-250 Hz, with a 1 Hz bandwidth

for center frequencies ≤ 150 and a 1.5 Hz bandwidth for

center frequencies > 150 Hz. Third order elliptical filters (20

dB attenuation in the stopband, 0.5 dB ripple in the passband)

were used. Signals were filtered in both forward and reverse

directions to eliminate potential phase distortions due to the

non-linear phase of the filter.

3) Patient details: Table I summarizes the patient demo-

graphics and data details. All patients included in this anal-

ysis had been diagnosed with medically refractory epilepsy.

Long-term EEGs used for temporal scale estimation in this

study, were previously analyzed in [8] for different purposes.

B. Estimation Methods

1) Model Order Selection: Consider the real-valued vec-

tor y(t) of length N, and the corresponding real-valued n-

dimensional parameter vector θ . A model order based on the

MDL principle is selected as follows: For a set of candidate

models H 1,... H n we choose a model that minimizes

L(H |y)+L(H ), where H ∈H 1∪H 2.... Each hypothesis

H may be thought of as a probability distribution. Code-

length L may be expressed as L = − logP(yn|H ). More

details on the MDL principle may be found in [9].

2) Mutual Information: For variables X and Y , with

respective marginal distributions pX (x) and pY (y), and joint

distribution pXY (x,y), their mutual information I(X ;Y ) mea-

sures the amount of information Y contains about X .

I(X ;Y ) = ∑
x∈X

∑
y∈Y

pXY (x,y)log2
pXY (x,y)

pX (x)pY (y)
= (1)

H(X)+H(Y )−H(X ,Y )

where H(·) is the entropy of the random variable and H(X ,Y )
the joint entropy between X and Y .

3) Approximate Entropy: For a real-valued vector y(t) of

length N, positive real number r and fixed positive integer m,

one may construct a sequence of vectors x(1),x(2), ...x(n−
m+1), defined as x(i) = [y(i), y(i+1),...., y(i+m-1)]/. Then,

for each i 1 ≤ i ≤ N −m+ 1 the correlation dimension is

given by:

Cm
i (r) = j :

d[x(i),x( j)]≤ r

N−m+1
(2)

where d is the maximum absolute distance between x(i) and

x( j). We can then define, the measure Φ, such that:

Φm(r)
1

(N−m+1)

N−m+1

∑
i=1

logCm
i (r) (3)

Approximate entropy is defined as:

ApEn(m,r) = limN→∞[Φ
m(r) = Φm+1(r)] (4)

4) Detrended Fluctuation Analysis: Signals are first inte-

grated over a typically small data window. Integrated signals

are segmented using a variable segment length, correspond-

ing to potentially distinct scales in the data. In each segment,

the data trend is estimated by fitting a least-squares line

through the data. The fluctuation F(k) at each segment k

is defined as:

F(k) =

√

1

N

N

∑
n=1

[y(n)− yk(n)]2 (5)

where N is the signal length and yk(n) the local trend in

segment k. When the logarithm of F(k) is plotted as a

function of the logarithm of the scale (window in which

the local trend was estimated), the slope of the best fitted

line through these data represents the scaling exponent α .

The value of α reflects the existence, range and type of

correlation in the data. For uncorrelated data, α ∼0.5. For

long-range correlations 0.5 < α < 1, and for non-power law

correlations, α >1.

III. RESULTS

We estimated both approximate entropy and mutual infor-

mation using a 10-s sliding window, and DFA using a 4-sec

integration window. Although this a priori data segmentation

choice may be computationally inefficient, and as previously

mentioned the goal of the estimation of temporal scales

is to avoid a priori decisions on data segmentation, this

preliminary study aimed to identify the underlying dynamic

scales of the epilepsy data, and compare the four measures

of uncertainty and complexity/correlation. Figures 1-3 show

examples of estimated parameters in two 2-hr segments,

from two patients. Mutual information (shown in red) is

superimposed to approximate entropy (black) for different

channels. In Figure 1 mutual information between channels

Fp1 and F7 (in close proximity to each other), Fp1 and

T3, Fp1 and Fp2 (across hemispheres) and Fp1 and O2 (at

long distances from each other) are shown. Corresponding

entropies for each of these channels (F7, T3, Fp2, 02) are

superimposed. For both patients, these 2-hr intervals corre-

spond to non-ictal epochs. Approximate entropy measures
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TABLE I

PATIENT CLINICAL DEMOGRAPHICS.

Patient # Age (yrs) Etiology Seizure focus # Recording hrs # Seizures

1 47 Cryptogenic L temporal 63.5 3

2 27 Head injury L temporal 193.5 7

3 24 Cryptogenic L/R/simult-bilat. temporal 40 4

4 23 Brain malformation L temporal 48 1

5 27 Cryptogenic R/L temporal 137.5 6

the unpredictability (randomness) of the data, and thus small

values of ApEn imply that the data are predictable. In

case of coordinated signals, and thus individually predictable

and jointly synchronized, mutual information is expected to

be high. So, in comparing the two measures, high mutual

information may be accompanied with low ApEn. Indeed,

this was often observed locally in time (order of a few min or

less), but anti-correlations between MI and ApEn were not

clear at longer time scales. The estimated optimum model

order varied at longer time scales, though only in a few

channels. In many channels it was either constant, for long

intervals, or zero.

We also compared these scales to the scaling exponents

estimated using DFA. The spatio-temporal distribution of

these exponents, for the data example in Figure 1, is shown

in Figure 2. Intervals of power-law correlations (0.5<α < 1)

were followed by intervals of non-power-law correlations

(α > 1) and even intervals of non-correlation (α < 0.5). The

scales corresponding to correlations that did not follow a

power-law were approximately time-locked to the maxima

of the estimated model-order trajectories, as well as maxima

in MI, e.g., third panel in Figure 1. The temporal variability

of estimated exponents was consistent across EEG channels.

Finally, we also examined the temporal scales of variation

in the entire recording for each patient (see Table 1). Figure

4 shows estimated parameters for patient 1, during an in-

terval of 11.7 hours. Mutual information estimated detailed

structure at localized scales (peaks in the mutual informa-

tion signal), but the overall envelope of this signal was

also informative in that it revealed another scale of slower

variation. Approximate entropy varied non-specifically and

was difficult to interpret, suggesting that it may be a better

measure for estimating local dynamic scales. The model

order also varied slowly over time, at the same approximate

rate as the mean envelope of mutual information. The scal-

ing exponent estimated using DFA varied similarly to MI,

although intervals where the exponent was ≤0.5 were not

clearly correlated with any of the scales estimated with other

approaches.

IV. DISCUSSION

We have investigated four approaches for estimating the

data structure and complexity in long-term EEGs from

patients with epilepsy, for data dimensionality reduction and

computationally efficient analysis. Approximate entropy was

the least sensitive to long-range dynamic variability, i.e., of

the order of hours. Mutual information also identified local

scales. Evidently a longer analysis window for estimation
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Fig. 1. Mutual information (MI, red), approximate entropy (ApEn, black)
and model order (M, green) as a function of time for 4 pairs of signals
(Fp1, F7), (Fp1, T3), (Fp1, Fp2), (Fp1, O2) - for MI. Model order was
normalized so that it can be superimposed to the other plots. This segment
is from patient 2, and corresponds to a nonictal epoch.

Fig. 2. Spatio-temporal distribution of scaling exponents estimated from
all EEG signals using DFA. The colorbar corresponds to exponent values.
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Fig. 3. Mutual information (MI, red), approximate entropy (ApEn, black)
and model order (M, green) as a function of time for 4 pairs of signals
(Fp1, F7), (Fp1, T3), (Fp1, Fp2), (Fp1, O2) - for MI. Model order was
normalized so that it can be superimposed to the other plots. This segment
is from patient 3, and corresponds to a nonictal epoch.
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Fig. 4. Mutual information (MI, red), approximate entropy (ApEn, black)
and model order (M, green) as a function of time for 4 pairs of signals
(Fp1, F7), (Fp1, T3), (Fp1, Fp2), (Fp1, O2) - for MI. Model order was
normalized so that it can be superimposed to the other plots. This segment
is from patient 1, and corresponds to a ∼11.7-hr long nonictal epoch.

Fig. 5. Spatio-temporal distribution of scaling exponents estimated from
all EEG signals using DFA, for the same segment as in Figure 4.

of the necessary marginal and joint pdfs could have been

used, potentially leading to the estimation of less variability

in the data. Optimum model order, selected according to

the MDL principle, only captured slow dynamics, of the

order of 30 min to hours. DFA estimated both local and

longer-range scales, which in some cases were time-locked

to scales estimated by other approaches. This preliminary

analysis suggests that multiple measures, which are sensi-

tive to different scales of variation, may be necessary for

estimating several relevant scales in long-term recordings.

Evidently for these estimations to be meaningful, appropriate

thresholds need to be selected. Also, a common window

of analysis across channels may be selected by estimating

these complexity measures individually at each channel, and

then selecting the shortest interval among the estimates. The

sensitivity/specificity of these parameters to the underlying

structure of the data also need to be assessed via simulation.
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