
  

 

 
Abstract—Signal processing in analog domain is favorable 

when power consumption is a critical design constraint. 

Continuous Wavelet Transform (CWT), which is increasingly 

being used in characterizing biomedical signals, when 

implemented in analog domain consumes less power provided 

the mother wavelet is properly approximated. This paper 

presents an approximation of Gaussian wavelet by making use 

of the Uniform approximation. Simulations of the 

approximated wavelet and the actual wavelet in MATLAB are 

performed and the results discussed. Simulations show that (i) 

approximation obtained closely matches the mother wavelet 

chosen and (ii) a stable approximation which helps in physical 

realization using any circuit design methodology.    

I. INTRODUCTION 

Continuous Wavelet Transform (CWT) is used for 
successful characterization of biological signals. It allows for 
localization of high frequency signal features in time and vice 
versa. This time-frequency information is obtained by 
carrying out the transform at various scales and at various 
instants of time. In case of ECG, CWT is extensively used to 
evaluate arrhythmia.  

Biomedical signal processing in point of care health 
technologies calls for low power implementations of circuits. 
The wavelet transform computed in digital domain is 
typically implemented in a DSP and is called a Discrete 
Wavelet Transform (DWT). Low power implementations of 
the wavelet transform can be obtained by computing CWT. 
This is because the CWT can be obtained by designing an 
analog filter whose impulse response closely matches the 
mother wavelet chosen. This analog filter when implemented 
using low power techniques helps in using the CWT on 
portable devices. Particularly for ECG signal analysis, CWT 
is better suited than DWT because the coefficients of CWT 
are translation invariant [1]. 

This paper presents an approximation of the Gaussian 

wavelet, which is a favorite choice for ECG signal feature 

extraction. The approximation is based on uniform 

approximation of transcendental functions. Section II gives a 

brief overview of the approximation methods presented in 

literature. It also details how the uniform approximation 

technique is used to obtain approximation of the Gaussian 

wavelet.  

Section III provides the performance analysis of the 

obtained Gaussian wavelet transfer function with the  

 

 
 

 

Gaussian wavelet function provided in wavelet toolbox 

of MATLAB, at different scales and time shifts. 

II. UNIFORM APPROXIMATION 

A. Literature Survey 

Approximations of wavelets and their low power 
implementations are presented in [2-7]. Dynamic translinear 
technique has been used to come up with low power 
implementations of CWT. In [2-4] Padé approximation has 
been used to arrive at a rational transfer function. The main 
advantage of the Padé approximation is the simplicity with 
which a unique solution can be obtained. The L2 
approximation technique described in [6-7] has been found 
superior to the Padé approximation but computationally more 
intensive. One drawback in L2 based approximation is the 
choice of the starting point of the approximation, which holds 
the key for obtaining optimum transfer function. Work 
reported in [8] suggests a systematic methodology to obtain a 
starting point for L2 based approximation. One major 
difference between the Padé approximation and L2 based 
approximation is the domain in which the approximation is 
arrived at. The Padé approximation is arrived at in the 
Laplace domain whereas the L2 based approximation is 
obtained predominantly in the time domain. However, L2 
based approximation can also be used in the Laplace domain. 
In the work reported in [8], a rational approximation of the 
Mexican hat wavelet has been given using McLauren series 
and is also arrived at in the Laplace domain.  

The design procedure illustrated in the above work 

follows more or less the same overall methodology. Firstly, 

a suitable mother wavelet is selected depending on the 

features of the input signal that are to be extracted. Secondly 

an approximation technique is followed which approximates 

the chosen mother wavelet closely. Then the scales and 

translations at which the CWT needs to be calculated are 

arrived at. Finally it is made sure that the mathematical 

approximations arrived at for all the pre determined scales 

and translations are stable so that they are physically 

realizable. However the order of the transfer function of 

approximation depends on the tradeoff between accuracy 

and design criteria. Higher the order of the approximation, 

better the accuracy but it is limited by practical criteria like 

chip area, power consumption etc. 
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Figure 1.  The Gaussian Wavelet as described in (3) 

B. Wavelet Transform 

 
The CWT of a signal  ( ) is given by the equation below 

[9]. 
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On observation of the above equation, we can say that 

the wavelet transform of a signal  ( ) can be obtained by 

convolution of the signal  ( ) with a function whose 

impulse response is  
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If a signal  ( ) is passed through a linear system H(s), it 

is convoluted with the impulse response of H(s). So, a given 
transfer function H(s) approximates the wavelet, if its 
impulse response is as given by eqn. (2). 

The wavelet of interest in this paper is the Gaussian 
Wavelet which is given by 
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The Gaussian Wavelet belongs to a family of the 
Hermitian Wavelets. It is the first derivative of the Gaussian 
probability distribution function and is illustrated in  figure 1. 
When we attempt to find the Laplace Transform of the 
Gaussian Wavelet, we obtain integrals which are 
transcendental and need to be approximated. The 
transcendental functions usually have series expansions at 
several points. The series expansions of most of these 
transcendental functions can be obtained at points like x=0 
and x=∞ easily than other points. Expansions at only one of 
these points are usually not uniform across the interval [0,∞]. 
Several methods like Lagrange Interpolation and Chebyshev 
Polynomials do not provide uniform approximations. This 
calls for a method which can give uniform approximation.  

C. Uniform Approximation 

This section details the Uniform Approximation method 
used in [10].  

The Uniform approximation requires the knowledge of 
series expansion of a given function f(x) at more than one 
point, including infinity.  

A function  ( ) which has series expansions at x=0 and 
x=∞ and which is finite in the interval (0, +∞) can be 
approximated as  
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The coefficients pi and qi are such that the above equation 
matches with the series expansion of f(x) at both x=0 and at 
x=∞. This is a problem similar to the Hermite – Padé 
interpolation with two anchor points. The above equation is 
approximated such that (4) has correct expansions at both 
x=0 and x=∞. Since the value of (4) at infinity is pn/qn, we 
can choose pn = qn =1. The remaining unknowns, after the 
values of pn and qn are fixed, are 2n. Equations (5) and(6) 
yield a system of (m+k-1) equations. We choose m and k 
such that the number of linear equations that can be written 
from the equations (5) and (6) equals the number of 
unknowns, that is, 2n. The polynomials a(x) and b(x) are 
known from the series expansions of the function f(x) at x=0 
and at x=∞ respectively. 
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D. Uniform Approximation on Gaussian Wavelet 

While trying to find out the Laplace Transform of 

Gaussian derivatives, we usually come across the 

complementary error function. The complementary error 

function is given by the equation below:  
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The function  ( ) can be written as series expansion at 

x=0 and x=∞, as given below in equations (8) and (9)  
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Figure 2.  5th order approximated Gaussian Wavelet with t=0, compared to 

the actual Gaussian Wavelet 

Using the above expansions for  ( ), the Laplace 

transform of Gaussian Wavelet can be approximated by the 

Uniform approximation method. A simple second order 

approximation of the Gaussian Wavelet in eqn. (3) is given 

by eqn. (10) given below: 
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Figure 2 illustrates the 5
th

 order approximation of the un-

shifted Gaussian wavelet with the actual wavelet given in 

equation (11). As can be seen from the figure, the 

approximated Gaussian Wavelet closely matches the actual 

un-shifted Gaussian Wavelet. The plot is presented from 

time t=0 because the system has to be causal if it has to be 

implemented using circuitry. The higher order 

approximations of the filter yield better accuracy, but the 

order is limited by practical issues.  

The CWT has to be computed at several scales and 

translations of the given mother wavelet. The more the 

number of these scales and translations more is the circuitry 

area involved and hence more is the power consumed. 

Typically transfer functions for several scales and 

translations are calculated and then they are implemented as 

a filter bank at the input stage. Figure 3 shows different 

orders of approximation of the Gaussian Wavelet done using 

the uniform approximation at different scales and 

translations. Equation (12) gives the transfer function of the 

approximated Gaussian Wavelet at a scale of 0.5 and shifted 

by 1sec and eqn. (13) gives the transfer function of the 

approximated Gaussian Wavelet at a scale of 1.0 and shifted 

by 2sec. 
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III. RESULTS 

A. Procedure 

The proposed approximation technique has been tested 

with the Gaussian Wavelet present in MATLAB. The 

procedure followed is similar to the one followed in [8] and 

is outlined below: 

1. ECG data of required duration is obtained from the 

MIT –BH database, into a variable in MATLAB. This 

forms the input signal. 

2. The impulse response of the approximated transfer 

function (at a particular scale and translation) is 

obtained.  

3. The input signal obtained in step 1 is then convolved 

with the impulse response obtained in step 2 and 

plotted 

4. Then the Gaussian Wavelet (at the same scale and 

translation) inbuilt in MATLAB is convolved with the 

same input ECG signal and plotted. 

5. The two plots are then superimposed and  compared 
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Figure 3.  The approximated Gaussian Wavelets at different scales and time shifts 
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B. Analysis 

Graphs obtained following the above procedure are 

plotted in the figure 4. The first part shows a comparison of 

plot obtained with MATLAB and plot obtained from the 

approximated (5
th

 order) transfer function when there is no 

shift and the scale is 1. The ECG data is of 10 second 

duration. We can examine that the plot from the 

approximated wavelet closely follows the plot obtained from 

the MATLAB.  

The second part of figure 4 shows the comparison of plot 

obtained with MATLAB with plot obtained from the 

approximated (7
th

 order) transfer when the shift is 2 and 

scale is 1. In this case, a ECG signal of one minute duration 

is considered. The plot obtained from the approximated 

wavelet closely follows the plot obtained from MATLAB. 

Even better results can be obtained by opting for a higher 

order approximation.  

Since in both the above cases plots are closely matched, 

the actual performance of the approximated Gaussian 

Wavelet at different scales and translations would yield 

results close to the coefficients that MATLAB would 

produce. The obtained approximated transfer functions are 

also stable and their stability has been checked by the pole – 

zero plot given in figure 5. As seen, all the poles are present 

on the left half plane, which indicates clear stability. This 

enables the obtained transfer function to be realized in any 

of the low power implementations present in the literature. 

 

 

Figure 4.  The comparison of approximated wavelet with the MATLAB 

CWT 

 

Figure 5.  Pole Zero plot of the 7th order approximated wavelet 

IV. CONCLUSION 

Approximation of Gaussian Wavelet has been presented 

in this paper. To obtain the approximation in the entire 

region (0,+∞) uniformly, Uniform approximation method 

has been followed and the transfer functions of the Gaussian 

wavelet at several scales and time shifts have been arrived 

at. Results show that the approximation closely follows the 

CWT in MATLAB. The transfer functions obtained have all 

been stable and hence physically realizable.   
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