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Abstract— Event-related potentials (ERPs) are widely used in 

brain-computer interface (BCI) systems as input signals 

conveying a subject’s intention. A fast and reliable single-trial 

ERP detection method can be used to develop a BCI system with 

both high speed and high accuracy. However, most of 

single-trial ERP detection methods are developed for offline 

EEG analysis and thus have a high computational complexity 

and need manual operations. Therefore, they are not applicable 

to practical BCI systems, which require a low-complexity and 

automatic ERP detection method. This work presents a joint 

spatial-time-frequency filter that combines common spatial 

patterns (CSP) and wavelet filtering (WF) for improving the 

signal-to-noise (SNR) of visual evoked potentials (VEP), which 

can lead to a single-trial ERP-based BCI. 

 

I. INTRODUCTION 

Brain-computer interface (BCI) is an emerging technology 
which can build the pathway between human brain and 
external devices without any muscle activities thus it allows 
people who are severely or completely paralyzed to 
re-establish communication with outside world [1]. Various 
meaningful cognitive or sensory related features, such as P300 
event-related potential (ERP) [2], steady state visual evoked 
potential (SSVEP) [3], flash onset and offset visual evoked 
potential (FVEP) [4] can be extracted from 
electroencephalography (EEG) and served as control signals 
for a BCI. 

Chromatic transient visual evoked potential (CTVEP) was 
first proposed in [5], where “chromatic” means that stimuli are 
in equiluminant chromatic modulation, “transient” means that 
temporal presentation is long enough to give discrete 
deflections or components in VEP waveforms. CTVEP can be 
elicited when chromatic visual stimuli are presented at low 
frequency (<4Hz) and perceived within the visual field. 
Unlike SSVEP-based and FVEP-based BCI, CTVEP-based 
BCI can minimize the risk of evoking epileptic seizures and 
reduce fatigue because it is driven by low-frequency stimuli 
without luminance variation [6].  

 However, the low-amplitude ERPs are usually buried in a 
high amount of background ongoing EEG and other 
non-cortical artifacts, and hence the signal-to-noise (SNR) is 
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very low. Conventionally, across-trial averaging is commonly 
performed to detect reliable ERPs for improving the accuracy 
of ERP-based BCI systems, but it inevitably increases the 
response time of BCI systems. Recent signal processing 
research for ERP-based BCI has focused on minimizing the 
number of trials required for reliable detection of ERP, 
moving towards the goal of single-trial ERP detection [7]. A 
fast and reliable single-trial ERP detection method is highly 
desirable in BCI research, as it can lead to a BCI system with 
both quick response and high accuracy. 

Generally, spatial domain, spectral domain or joint domain 
can be used to improve SNR of observed single-trial 
responses. Spectral filter is used to improve the quality of EEG 
signals by removing unrelated signals and noise beyond the 
frequencies of interest, while the spatial filter can remove 
noise by using their spatial distribution across different 
electrodes. 

In this work, we propose a joint spatial-time-frequency 
filtering techniques, which combines common spatial patterns 
(CSP) [8] and wavelet filtering (WF) [9] to improve the SNR 
of single-trial CTVEPs. CSP is a mathematical tool for 
separating a multivariate signal into a set of additive 
components which have maximum differences in variance 
between two classes. Compared with independent component 
analysis (ICA), CSP makes use of prior information about the 
classes so that the decomposed components are ranked 
according to their discriminative power. Hence, CSP can 
avoid the difficult problem of selecting event-related 
independent components for reconstruction in ICA, which 
relies heavily on operator’s experience. CSP is followed by 
the WF-based time-frequency analysis, which is designed for 
characterizing and manipulating signals whose statistics vary 
in time, such as transient signals. Compared with short-time 
Fourier transform (STFT) using a fixed window and thus 
having a limited time-frequency resolution, wavelet is a more 
sophisticated technique which offers the optimal compromise 
between time and frequency resolution therefore it is more 
suitable for exploring event-related modulations of the EEG 
spectrum in a wide range of frequencies. When applied to 
CTVEPs, the proposed CSP+WF method provides a 
significant improvement of SNR and enhance the 
classification accuracy notably.  

II. METHOD 

A. Data acquisition and pre-processing 

Eight subjects (four males and four females, 21-25 years) 
participated in the experiment. All participants were given 
written informed consent and the local ethics committee 
approved the experimental procedure.  

Subjects were seated at a comfortable chair and 
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experiments were done in a dim, unshielded office laboratory 
with reasonable activities to simulate real-life situation. EEG 
signals were recorded non-invasively and binocularly with 12 
AN/AgCl electrodes using a NeuroScan Quik-cap electrode 
(Compumedics NeuroScan, EI Paso, TX, USA) placement 
system. Nine electrodes in the visual cortex were used to 
collect data and they were kept at impedance of less than 5 kΩ 
and monitored under built-in impedance measurement module. 
During experiment, EEG signals were continuously recorded 
and filtered (0.05-200Hz) with a sampling rate of 1kHz. 
Continuous EEG data were band-pass filtered between 1 and 
30Hz. 

Four time-encoded (0-1-1-0, 1-1-0-0, 0-1-0-1, 1-0-1-0) 
isoluminant red-green circular sinusoidal gratings with 2 cpd 
of spatial frequency were used to elicit CTVEP (Figure. 1). A 
visual stimulus was turned on for 50ms and turned off for 
200ms to denote a code of “1”, while one silent cycle with 
duration of 250ms denoted a code of “0”. Consequently, the 
duration of one 4-bit code was 1 s. 

In the experiment, subjects were instructed to gaze at the 
fixation after the first notification sound, minimizing eye 
blinking and to rest after the second notification sound. Visual 
stimuli were delivered in trains of three identical trials, and 
one trial consisted of stimuli representing a 4-bit code. Four 
types of 4-bit codes were randomly delivered at the center of 
the screen and in total twenty trains (five trains per type) were 
collected. Therefore, we had 60 trials and each trial contained 
two “1-bit” and two “0-bit”. 

B. Common Spatial Patterns 

The proposed single-trial CTVEP detection consists of two 
consecutive stages: CSP-based spatial filtering and 
wavelet-based time-frequency filtering.  

To apply CSP for detecting single-trial CTVEPs, EEG 
waveforms in response to visual stimuli (1-bit) and those 
recorded when stimuli were absent (0-bit) will be regarded as 

two classes. Denote 
tni
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the number of samples in time (in this work, n is equal to 9 

and t is equal to 250). Similarly, we have 
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the generalized eigenvector w is found to maximize the 

difference in variance between two classes. In this work, two 
components with the most discriminative power (i.e. 
CTVEP-related components) were automatically selected by 
calculating the correlation coefficients between the averaged 
1-bit waveform and the EEG trials reconstructed form the 
selected components. Leave one out cross validation (LOOCV) 
is used throughout the CSP, wavelet filtering and 
classification. The LOOCV strategy was done for each subject 
by using one trial as the test sample and the remaining (60-1) 
trials from the same subjects as the training set. This procedure 
is therefore repeated 250 times, and averages and standard 
deviations can be calculated.  

 

Figure. 1  Experimental setup. (a) Channel layout used in the experiments; (b) 
The location of stimulus; (c) The paradigm of the experiment.  

C.  Wavelet filtering 

CSP will be followed by the WF method (Figure. 2) as 
follows: (1) single-trial VEP waveforms are transformed into  
time-frequency representations using continuous wavelet 
transform (CWT); (2) a specific region on the time-frequency 
domain corresponding to the VEP is identified from the 
time-frequency representation of the VEP waveform 
averaged across all trials; (3) single-trial VEP waveforms can 
be reconstructed from the wavelet coefficients within the 
VEP-related time-frequency region using inverse CWT 
(ICWT). 

1) Continuous wavelet transform (CWT) 

Unlike the windowed Fourier transform, the CWT is able 
to construct a time-frequency representation of EEG or ERP 
signals that offers an optimal compromise for time and 
frequency resolution by adapting the window width as a 
function of estimated frequency, CWT can present a 
time-domain EEG signal into time-frequency domain and 
offers the optimal compromise between time and frequency 

resolution. The CWT of a VEP waveform )(tx  is defined as: 
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where a  is the scaling factor defined as the ratio between 

frequency f and central frequency 0f . )(t is the morlet 

wavelet acting as mother wavelet with central frequency 0f  

and bandwidth bf . In this study, bf is set to be 0.1, while 0f

is selected by an empirical function 

 43.38.80  LFPf  (4) 

where LFP is the power ratio of low-frequency (<10Hz) 

components in the VEP waveform )(tx . 
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Figure. 2  Procedure of wavelet filtering. (a) Building the mask from training 
set. The white corresponding to the VEP is identified and can be used to filter 
the single-trial VEP of test sample; (b) Filtering the single-trial data of test 
sample. 

2) Wavelet filtering mask 

A binary time-frequency mask 
fM  is generated by 

creating a matrix whose time-frequency pixels are set to 1 
when cumulative distribution function (CDF) of normalized 
power spectrum is larger than a threshold (= 0.55*max(CDF)) 
while others are set to be 0. The selected threshold was set jest 
before the inflection point, with the objective of keeping the 
greater part of 1-bit while removing as much noise as 
possible. Thus, the mask can identify the distribution of 
CTVEPs elicited by circulars’ flickering from averaged 
templates. This mask is used to filter the 1-bit as well as 0-bit 
of each single-trial. After filtering, the time-frequency 
representation is achieved by: 

 ),(),( aWMaWF ifi   (5) 

where iW  is the time-frequency representation of single-bit 

input obtained by CWT and iWF  is the filtered 

time-frequency representation. 
 

3) Inverse continuous wavelet transform (ICWT) 

In the last step, we reconstruct the signal into time domain 
using ICWT: 
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where )(ty i is the filtered and reconstructed single-trial VEP 

waveform. 

In order to show the performance of proposed method, we 

estimated the SNR of single-trial CTVEPs before and after 

each stage (CSP and WF) as: 

 ]ˆ/)ˆˆ[(log10ˆ 222

10 NNXRNS   (7) 

where 
2ˆ
X is the power of single-trial CTVEP waveform and 

2ˆ
N is the power of noise (estimated as the difference between 

single-trial CTVEP waveform and the average across all 
trials).  

III. RESULTS 

A.  Improvement on SNR 

When applied to the 9-channel CTVEP recordings, the 
proposed CSP+WF method showed significant improvement 
on SNR (t-test, p<0.05). 

Figure. 3 showed the single-trial CTVEPs of “1-bit” and 
“0-bit” in each processing stage. The CSP filter decreased the 
fluctuations of 0-bit and increased the pattern of 1-bit. 
However, noises still existed even when CSP was used. Then 
the WF method further removed the components which were 
not related to CTVEP responses. Therefore, the single-trial 
CTVEPs with minimum noisy components were obtained.  

Figure. 4 (a) showed the averaged SNRs in each 
processing stage, and they were compared using t-test. Our 
proposed CSP+WF method can significantly increase the 
SNR. (CSP vs. Raw: p=0.0002; CSP+WF vs. Raw: 
p=0.000005; CSP+WF vs. CSP: p=0.0002; t-test). 

B.  Classification accuracy 

The classification accuracy was estimated under the 
LOOCV strategy for each subject by using one trial as the test 
sample and the remaining (60-1) trials from the same subjects 
as the training set to build the template. Linear discriminant 
analysis (LDA), naïve bayes (NB) and support vector machine 
(SVM) were used and compared. 

The correlation coefficients between single-trial CTVEPs 
in the test sample and four different templates obtained from 
training set were calculated and compared. Single-trial 
CTVEPs could be classified into one of four categories 
corresponding to the template with the maximum correlation 
coefficient with the trial under test. By evaluating the 
classification accuracy, we can estimate the performance of 
proposed method when being used at BCI system to translate 
CTVEPs into corresponding commands. 

Figure. 4 (b) showed the averaged classification accuracy 
and Table 1 showed the classification accuracies of 8 subjects 
using different VEP detection methods.  When using 
CSP+WF, the accuracy can be as high as almost 90%. It can 
also be observed that the CSP and CSP+WF methods can 
significantly improve the classification accuracy (CSP vs. 
Raw: p=0.0309; CSP+WF vs. Raw: p=0.0048; CSP+WF vs. 
CSP: p=0.0177; t-test). 

IV. DISCUSSION 

In this study, a spatial-time-frequency VEP detection 
methods which combined CSP-based spatial filtering and 
CWT-based time-frequency filtering were developed and 
applied to CTVEP recordings. The proposed method is 
designed for BCI systems to improve the SNR and thus 
increase the classification accuracy. Three main founding are 
observed from the experimental results. First, we show that the 
two classes in CTVEPs can be successfully separated by CSP 
with correct patterns of waveform. However, the SNR after 
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Figure. 3  Processing results in each stage. The upper panel showed the 
single-trial “1-bit” and “0-bit” waveforms. The lower panel showed the 
averaged waveform. 

CSP are still relatively low which may be caused by the 
large-scale frequency contribution from the unrelated    visual 
stimulus. For this reason, time-frequency filtering which is 
able to capture the unique time-frequency characteristics of 
VEPs, is needed. Second, after removing noises by CSP+WF, 
the SNR of CTVEPs can be significantly enhanced both in 
average and single-trials. The time-frequency filter model is 
generated by thresholding the time-frequency representation 
of averaged “1-bit”. Each subject will have a trained 
time-frequency filter model to capture his VEP characteristics 
to achieve the highest SNR.  Third, the classification accuracy 
can achieve almost 90% which is quite good for single-trial 
BCI system. In our work, four types of 4-bit codes were tested, 
and consequently they can be translated into four 
corresponding commands for a BCI system.  

Many signal-processing techniques can effectively 
improve the SNR of ERPs, but their high computational 
complexity impedes their practical applications in BCI 
systems. The proposed VEP detection methods can process 
the data within a short time (<100ms for one trial, 
configuration: Intel Core i7-2600 CPU @ 3.40GHz, 8GB 
RAM), which makes a good compromise between time and 
performance.    

 
TABLE. 1  CLASSIFICATION ACCURACY FOR EACH PROCESSING STAGE 

       Subject 

Data type 
1 2 3 4 5 6 7 8 Mean Std 

Raw 0.659 0.765 0.452 0.544 0.513 0.920 0.941 0.657 0.682 0.183 

CSP 

processed 
0.933 0.800 0.617 0.867 0.917 0.933 0.933 0.683 0.835 0.117 

CSP+WF 

processed 
0.983 0.833 0.733 0.917 0.900 0.950 0.950 0.833 0.894 0.083 

Figure. 4 Statistical comparison of (a) SNR and (b) classification accuracy 

(averaged across trials) obtained at different processing stages across all 

subjects. Error bars represent the standard deviation across subjects. *p<0.05 
(t-test). 
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