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Abstract—This paper presents the implementation details, 

system architecture and performance of a wearable sensor 

network that was designed for human activity recognition and 

energy expenditure estimation. We also included ActiGraph 

GT3X+ as a popular single sensor solution for detailed 

comparison with the proposed wearable sensor network. Linear 

regression and Artificial Neural Network are implemented and 

tested. Through a rigorous system study and experiment, it is 

shown that the wearable multi-sensor network outperforms the 

single sensor solution in terms of energy expenditure estimation.   

Keywords – Wearable Sensor Network; Activity Recognition; 

Energy Expenditure Estimation. 

I. INTRODUCTION 

According to the data from World Health Organization, 
worldwide obesity increased over 200% since 1980 [1]. It 
has been proven that obesity can cause coronary heart 
disease, type-2 diabetes, and various types of cancers [2]. 
Diet control and physical exercise are the two most 
important components of obesity control. Traditionally, 
self-reported questionnaires were widely used by 
researchers for estimating both food intake and physical 
activity levels for high-risk individuals. In recent years, 
however, accelerometers, gyroscope, pressure sensor and 
heart rate monitor have been deployed for physical activity 
detection and energy expenditure (EE) [3].  

Recent advances in low-cost and energy-efficient sensing 
and networking technology are opening up new possibilities 
for wearable medical diagnostics[4][5]. A number of tiny 
sensors, strategically placed on the human body, can create a 
network

 
that can monitor physical activities, EE, and vital 

signs, and provide real-time feedback analytics to medical 
service providers. Many patient diagnostic procedures can 
benefit from such continuous health monitoring for optimal 
management of prevention of chronic conditions and 
supervised illness recovery.   

Traditional EE measuring methods, such as direct and 
indirect calorimetry, doubly labeled water, physical activity 
scoring through observation and the Compendium of Physical 
Activities [6], are too involved and expensive to be used over 
a long period of time or for a large population. 
Accelerometers and heart rate monitors are therefore widely 
used for EE estimation[7][8], since they are cheap and 
non-invasive.  

Some other papers include heart rate into consideration to 
improve the accuracy of EE estimation [7][9]. In [7], two gel 
electrodes were placed on the subjects’ chest for ECG data 
collection, and the ECG data is stored on a device attached to 

an elastic belt on the chest, which also has a tri-axial 
accelerometer. Brage [9] uses a Polar Vantage NV HR belt 
for heart rate monitoring, and two CSA accelerometers on 
each hip for movement capturing. The heart rate indeed 
improve the accuracy in EE estimation, but these heart rate 
monitoring devices requires direct skin contact and are not 
comfortable to wear for everyday usage. Zhang [10] uses 5 
wirely connected sensors to achieve highly accurate physical 
activity detection and EE, all of which also require skin 
contact.  

Crouter and Rothney [11][12] proposed two popular 
regression schemes for EE estimation based on a single 
accelerometer mounted  at the hip. The main idea of [11] is to 
classify activities into three different groups based on the 
intensity, and apply different regression models for each 
activity group. Rothney [12] first extracts features of the 
accelerometers capturing the intensity of movement, and 
incorporate demographic features to include the inter-subject 
variations. The extracted features are then fed into an 
Artificial Neural Network for training and testing purposes. A 
significant disadvantage of the methods abovementioned is 
that they are not able to capture movement of the limbs, 
because they use a single accelerometer on the hip.  

To address that limitation we used a wearable sensor 
network with multiple accelerometers. This system is 
expected to work better than single accelerometer solution. 
To the best of our knowledge, there has not been any detailed 
comparison between the performances of single and 
multi-sensor solutions in this context. In this paper, we report 
the results from a systems level study of the multi-sensor 
wearable sensor network applied for EE estimation analytics. 
Based on acceleration data from 3 biaxial accelerometer 
sensors worn on the right wrist, right thigh and right ankle, the 
system was trained for energy expenditure estimation. We 
compare its performance with a popular single sensor 
solution using an accelerometer on the hip.   

II. SYSTEM ARCHITECTURE 

A. Architecture 

As shown in Fig. 1, the experimental system consists of 
three main components: an Oxycon Mobile indirect 
calorimeter [13], an ActiGraph GT3X+ [14] worn on the hip, 
and a wearable wireless sensor network with three sensors 
worn on the right wrist, right thigh, and right ankle. The 
Oxycon Mobile calorimeter is a battery powered system that 
measures breath-by-breath air exchange. It consists of a gas 
analyzing unit, a wireless telemetry unit, and a mask. It 
measures the volume of air, and the O2 and CO2 percentage 
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during each exhalation. The gas analyzing unit is calibrated 
right before each experiment using a certified   gas mixture of 
16% O2 and 4.01% CO2. We use 30-second window for the 
calculation of MET (Metabolic Equivalent of Task), where 1 
MET corresponds to 3.5 mlO2/Kg·min. An ActiGraph 
GT3X+ is secured on the hip using an elastic belt, and it is 
programmed to sample at 30Hz with a resolution of 2.93mg 
and the range up to ±6g.  

For the sensor network, each wearable sensor is a small 
6cm x 3.2cm x 1.5cm package, weighing approximately 20 
grams. The package contains a sensor subsystem (MTS310 
from MemSic Inc.), a processor and radio subsystem (Mica2 
motes), running TinyOS operating system. Batteries weigh 
approximately 13 grams and are attached separately. For each 
sensor package, two 600mAh AAAA batteries are able to 
support the system for more than 30 hours. A sensor package 
is worn with an elastic band so that once worn, the sensor 
orientation does not change with respect to the body 
segments. Once activated, each sensor package continuously 
samples its acceleration (-2g to +2g) in two axes and sends 
them to a nearby (within 50 meters) laptop using a 900MHz 
wireless link via an access point.  

 
Fig. 1: Wearable energy expenditure estimation system 

B. Media Access Control 

A collision-free TDMA MAC protocol is used for both 
intra-body and out-of-body radio communication. As shown 
in Figure 2:a, the access point is programmed to send periodic 
polling packets to sensors W, A, and T, referring to those on 
the wrist, ankle, and thigh respectively. Upon reception of a 
polling packet, a sensor sends its data packet out. A guard 
time is allocated between the polling and data packets in order 
to accommodate clock drifts and processing latencies. Frame 
duration of 300 ms is used in the polling process. A packet 
occupies approximately 30ms, and the allocated guard time is 
approximately 20ms. 

Figure 2:b depicts the polling and data packet structures. 
In a polling packet, the Polling Sensor ID represents the 
sensor that is being polled, and the sent Time Stamp captures 
the current time of the access point. The polled sensor returns 
this Time Stamp as is with the sampled acceleration data, thus 
enabling the receivers to synchronize data samples from all 
three sensors with reference to the Access Point’s time.  The 
Request Flag is used to indicate the requested type of data. 
Finally, the Padding Bytes are inserted to keep its size equal 

to that of the data packets.  

 
(a) MAC layer polling frame structure  

 
(b) Polling and data packet structure 

Figure 2: TDMA MAC layer for on- and off-body communication  

In a data packet, the Reporting Sensor ID represents the 
sending node’s identity, and the Time Stamp contains the 
same value in the corresponding received polling packet. The 
Request Flag is used to indicate the type of data being sent.  
As shown in Figure 2:b, the data part of the packet contains 
two components: 1) Data Payload, consisting of 3 most 
recent acceleration samples (4 bytes each) which are being 
sent for the first time, 2) Previous Data Payload, consisting 
of 3 previous samples that were already sent as the Data 
Payload in the last frame. In other words, there is a 
three-sample overlapping redundancy from each sensor over 
consecutive frames. in the event of a polling packet or data 
packet loss, a recipient sensor (or access point) can recover 
data up to a certain extent due to that redundancy. For a given 
packet loss, a data loss would occur only when two 
consecutive packets get lost. Therefore, for a packet loss 
rate 	� , the effective data loss rate P can be expressed 

as	� � �2.  

III. PROCESSING METHODS 

In this section we present our approach to comparing the 
performance of EE estimation using the single sensor on the 
hip and the 3-sensor wearable sensor network. Our approach 
for EE estimation takes three steps. First we extract features 
for both activity recognition and EE estimation. Second, we 
apply activity recognition mechanism and categorize 
activities into clusters based on their intensities and positions 
of the body. Third, we apply different regression equations to 
each activities category using both accelerometric and 
demographic features.  

A. Feature Extraction 

In our previous work [3][15], mean and entropy have 
been proved to be efficient in activity recognition, since they 
capture both the direction and moving intensity of the limb 
the sensor is attached to. Using those features, we are able to 
different fourteen different activities namely, bicep curls, 
riding a bike briskly and slowly, jogging, jumping jacks, 
walking briskly and slowly, sweeping, squats, climbing 
stairs, lying down, sitting reclined, sitting straight and 
standing. The same features are also used for EE estimation 
in this paper. Raw accelerometer data of each axis on each 
sensor is segmented into 4.2 second 50% overlapping 
windows. Mean and entropy are then calculated for each 
window.     

Demographic features are also used in the regression 
model to compensate inter-subject variations in energy 
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expenditure. Different people performing the same activity 
would generate similar acceleration data but very different 
EE, because of the differences in gender, age, weight, and 
height. Therefore, we also include these demographic 
features into the model.   

B. Activity Clusters 

We applied activity recognition mechanism developed in 
our previous work [3] for activity detection. It has been 
shown that the proposed scheme is able to provide 96.95% 
accuracy in differentiating the 14 activities using SVM 
(Support Vector Machine).  Activities are then grouped into 
different clusters based on their intensity and position of the 
body. Specifically, sedentary and light activities would 
consume less energy than laborious activities. However, EE 
can be very different even with similar accelerometric 
measures. For example, walking consumes more energy than 
riding a bike at the same speed [16], since it requires muscles 
on the leg to support the mass of the body. Therefore, we 
divide the activities into four groups as shown in Table 1.  

 Activities 

Group 1 
Lying down, sitting reclined, sitting straight, 

standing 

Group 2 Bicep curls and sweeping 

Group 3 
Jogging, jumping, walking briskly, walking 

slowly, squats and climbing stairs 

Group 4 Riding a bike briskly and slowly 

Table 1: Clustering of activities 

According to the effectiveness of the mean and entropy as 
features in detecting activities, we also extract these two 
features on each axis of ActiGraph GT3X+. SVM is then 
trained and tested using leave-one-out scheme. It is shown 
that this mechanism has 80.71% accuracy in detecting the 14 
activities. In order to compare the EE estimation performance 
of ActiGraph GT3X+ to wearable multi-sensor network, we 
adopt the same clustering of activities as shown in Table 1.     

C. Activity Cluster Modeling 

According to Crouter [11], different models should be 
used for activities with different intensities. Therefore, we 
build EE estimation models for each of the above mentioned 
activity cluster, and we also experiment with linear regression 
and ANN (Artificial Neural Network) for each cluster. For 
generalizability purpose, both accelerometric and 
demographic features are used in the models [12].   

IV. EXPERIMENT AND EVALUATION 

A. Experimental Methods 

The experiments were carried out on 25 subjects, 17 
female and 8 male. The details of the subjects are shown in 
Table 2. 

 Mean ± std Range 

Age (Year) 21.24±2.03 19~28 

Weight (Kg) 65.62±10.36 46.75~88.7 

Height (cm) 168.74±8.36 150~186.1 

BMI (Kg/m2) 21.24±2.03 17.32~27.05 

Table 2: Statistics of the subjects 

Before each 60-minute experiment session, a subject is 
asked to lie down for 10 minutes. During the experiment, 
each subject wore all the equipment as illustrated in Fig. 1. 
All the devices are time synchronized so that the data from 
them can be correlated and compared. The subject is then 
engaged in 14 different activities, i.e., bicep curls, riding a 
bike briskly and slowly, jogging, jumping jacks, walking 
briskly and slowly, sweeping, squats, climbing stairs, lying 
down, sitting reclined, sitting straight and standing. The 
activities represent a combination of exercise and lifestyle 
activities and consist of a wide range of activities from 
sedentary to vigorous.  

Subjects were instructed to perform each of the 14 
activities at least for 1 minute, but they were free to choose 
the sequence and the length (1-10 minutes) of each activity. 
In order to improve the generalizability of the results, data 
during the transitions are kept in the data set, and the models 
are built and evaluated in such a way that data from 2/3 of 
the subjects is used for training and that from the other 1/3 is 
used for testing.  

B. Results 

In our previous work [3][15], it was shown that the 
wearable sensor network is able to detect the 14 activities 
with up to 96.95% accuracy, and it was proved that more 
sensors can deliver higher detection accuracy. When similar 
mechanism is applied on ActiGraph GT3X+ sensor, the 
accuracy drops to 80.71%, and it showed some difficulties in 
differentiating between jumping jacks and walking fast, 
climbing stairs and riding a bike briskly, and sitting straight 
and standing. However, inferior accuracy in activity 
recognition does not necessarily indicate lower performance 
in EE estimation, because the activities that are mistakenly 
labeled may have similar EE with the detected activities. 
Table 3 demonstrates the average and standard deviation of 
EE of each activity. It can be seen that sitting straight and 
standing, climbing stairs and riding a bike briskly have 
similar EE. Jumping jacks and walking fast also have their EE 
values partially overlapped.  

 

Activity 
EE 

(Mean±std) 
(METs) 

Activity 
EE 

(Mean±std) 
(METs) 

 Bicep curls 2.46±1.07 Sweeping 3.69±1.37 

Riding a bike 
briskly 

6.82±1.22 Squats 5.03±1.55 

Riding a bike 
slowly 

5.18±1.04 Climbing stairs 7.42±1.91 

Jogging 9.25±1.70 Lying down 2.25±1.38 

Jumping 8.61±2.07 Sitting reclined 2.56±1.55 

Walking briskly 5.74±1.19 Sitting straight 2.59±1.58 

Walking slowly 3.84±1.29 standing 2.45±1.47 

Table 3: Mean and standard deviation of per-activity EE  

Fig. 3 illustrates the performance of Artificial Neural 
Network and linear regression using the extracted features. 
Fig. 3:a corresponds to the wearable multi-sensor network, 
and Fig. 3:b corresponds to the ActiGraph GT3X+ 
accelerometer on the hip. Observe that the model using 
wearable sensor network outperforms that using ActiGraph 
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GT3X+ in all the activity clusters. Moreover, linear 
regression method works better than ANN in both cases, 
which is partially because of the generalizability problem of 
ANN [17]. Therefore, we use linear regression for our 
following analysis.    

 
    (a)  Wearable sensor network        (b) ActiGraph GT3X+ 

Fig. 3: Performance of models using ActiGraph GT3X+ and 
wearable multi-sensor network 

Fig. 4 shows the EE estimation errors using linear 
regression method with wearable sensor network and 
ActiGraph GT3X+. It can be seen that the wearable 
multi-sensor network performs better than ActiGraph GT3X+ 
on the hip in most cases. EE estimation errors are higher for 
jumping jacks, and climbing stairs, which also have larger 
standard deviation as shown in Table 3.  

 
Fig. 4 EE estimation using linear regression with wearable 

multi-sensor network and ActiGraph GT3X+ 

V. CONCLUSION AND FUTURE WORK 

In this paper, we introduced a wearable multi-sensor 
sensor network for activity recognition and EE estimation, 
and we compared the performance of the proposed wearable 
multi-sensor network with a popular single sensor solution. 
The proposed model can be divided into the following three 
steps. First, we extract features based on accelerometer 
readings including mean and entropy, and we also include 
demographic features, such as gender, age, weight and 
height, into our models. Second, based on the intensity and 
position of the activities, we group the 14 activities into 4 
groups. Third, we build linear regression model and ANN 
model using both the accelerometric and demographic 
features extracted.  

Our experiments show that the proposed wearable 
multi-sensor network consistently outperforms the single 
sensor solution based on ActiGraph GT3X+, and linear 
regression model also performs better than ANN model. 

Our ongoing work includes: 1) including other 
physiological facts as features in building the models, such as 
body temperature and skin conductivity, 2) developing better 

models for higher EE estimation accuracy, and 3) integrating 
the wearable system as a part of overall energy management 
infrastructure that includes  an automatic on-body diet 
monitoring system.         
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