
  

 

Abstract— Traditional brain-state classifications are 

primarily based on two well-known neural biomarkers: P300 

and motor imagery / event-related frequency modulation. 

Currently, many brain-computer interface (BCI) systems have 

successfully helped patients with severe neuromuscular 

disabilities to regain independence. In order to translate this 

neural engineering success to hearing aid applications, we must 

be able to capture brain waves across the population reliably in 

cortical regions that have not previously been incorporated in 

these systems before, for example, dorsolateral prefrontal 

cortex (DLPFC) and right temporoparietal junction. Here, we 

present a brain-state classification framework that 

incorporates individual anatomical information and accounts 

for potential anatomical and functional differences across 

subjects by applying appropriate cortical weighting functions 

prior to the classification stage. Using an inverse imaging 

approach, use simulated EEG data to show that our method 

can outperform the traditional brain-state classification 

approach that trains only on individual subject’s data without 

considering data available at a population level. 

I. INTRODUCTION 

Most young, normal hearing listeners can seamlessly 
direct their attention to segregate sound sources in crowded 
environments. However, in face of multiple sound sources, 
listeners with hearing loss often find such situations 
overwhelming and intimidating [1]. Hearing aids, especially 
bilateral aids  [2], [3], can help; yet the top complaint from 
users remains that these aids are not beneficial to them in 
noisy situations [4]. While directional amplification could 
selectively amplify sound in a spatial pattern pre-determined 
by sophisticated algorithms, the listener still would not have a 
means of controlling that amplification [5].  Shinn-
Cunningham and Best [6] proposed that “a revolutionary 
assistive listening device would use robust source separation 
algorithms to create auditory objects… and emphasize the 
desired target of attention… [while] enabling the listener to 
selectively attend, at will, to different objects in the 
environment.” Though existing computational auditory scene 
analysis cannot yet segregate sources as well as normal 
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hearing listeners, this is an active research area [7]. 
Notwithstanding the above challenge, a next-generation 
hearing aid design must move away from a pure feed-forward 
amplification to a system that incorporates a feedback based 
on the user’s brain state (e.g., maintaining attention to one 
talker versus switching attention between conversations) that 
could then dynamically amplify sound based on the user’s 
attentional focus. 

Brain patterns can be captured invasively (e.g., 
electrocoticography) or non-invasively (e.g., 
magnetoencephalography; MEG) in order to classify human 
brain states. In hearing aid design, only technologies that are 
portable and non-invasive should be considered, such as 
electroencephalography (EEG). In the past two decades, the 
BCI research community has concentrated on developing 
systems that serve the needs of those with severe 
neuromuscular disabilities. Traditionally, the majority of the 
brain-state classifications are based on two neural 
biomarkers: P300 (a positive deflection of the EEG event-
related potential at 300 ms that reflects a person’s reaction to 
a presented “oddball” stimulus) and motor imagery / event-
related frequency modulation (frequency-specific power 
modulation of ongoing EEG activity due to preparing or 
imagining of a specific movement). However, how do we 
begin to design new brain-state classification algorithms that 
move beyond these classic neural biomarkers? Additionally, 
is there a way to exploit training data across subjects instead 
of requiring a lengthy calibration session before every use of 
a BCI? Here, we describe a procedure that would allow us to 
pool data across subjects to identify new neural biomarkers 
that are associated with behaviorally relevant cognitive states 
and to optimally leverage this across-subject information to 
design new brain-state classification algorithms. 

II. METHODS 

A. Participants 

In a previous EEG study, structural MRI scans (using a 
1.5-T Avanto scanner, 1 MPRAGE and 2 FLASH scans, ~8 
min/scan) were collected for nine healthy subjects 
(procedures approved by Massachusetts General Hospital). 
This information was used to compute a three layer boundary 
element model (BEM) for calculations involving volume 
conduction. A BEM is a 3 dimensional head model 
comprised of the brain surface, skull, and scalp. Electrode 
locations were then coregistered with the structural MRI scan 
using cardinal landmarks (left and right periauriculars, 
nasion). FreeSurfer (software: 
http://surfer.nmr.mgh.harvard.edu/) was used to construct a 
distributed current model of about 7000 dipoles (Fig. 1 Top) 
on the cortical mantle oriented normally to the brain surface. 
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These dipoles simulate the activity of macrocolumns in the 
cerebral cortex [8]. 

B. Brain activity simulation and estimation 

Combining all of this information, each subject’s forward 

solution gain matrix G was calculated using the BEM model, 

which gives EEG sensor activity x for any given dipole 

source activation j at the brain surface where  

    .          (1) 

The inverse solution to the forward gain matrix M can be 

determined. M allows the estimation of current at each 

dipole on the cortical surface   ̂given recorded EEG activity 

x where 

 ̂    .           (2) 

Simulation of EEG data begins by activating spatial 
regions of interest (ROIs) in the distributed current source 
space. The 78 ROIs used come from a standard parcellation 
of the cortex (using FreeSurfer) and are morphed from an 
average brain to the subject of interest through spherical 
morphing [9]. Cortical currents j are simulated at each dipole 
contained in the specific ROI (Fig. 1 Bottom Left). Currents 
are normalized based on the ROI size, and only one ROI is 
activated at a time. Variable white Gaussian noise is added to 
each dipole to manipulate the signal to noise ratio (SNR) for 
each set of trials. The simulated currents j are then multiplied 
by the gain matrix G to obtain simulated EEG sensor activity 
x for about 70 sensors (see Fig. 1 Bottom Middle). 
Multiplying the activity by this lead-field matrix G introduces 
noise correlations as cortical currents are transformed to the 
sensor space. The pseudoinverse M is then multiplied by the 
noisy EEG activity x to obtain the dipole estimation   ̂(Fig. 1 
Bottom Right). The inverse matrix M depends only on the 

lead field (derived from electromagnetic equations [8], [10]) 
and the noise covariance matrix. The noise covariance used 
here is only slightly regularized due to a reliable noise 
covariance estimate. With non-simulated data, a 
regularization parameter is used to ensure a stable, reasonable 
inverse solution even for noise covariance estimates that are 
less reliable.  

C. Transforming data between subjects 

A transformation matrix      is also calculated for every 

pair of subjects. This involves spherically morphing brain 

spaces between subjects while preserving sulcal-gyral 

alignment. This allows for the conversion of any subject k’s 

source space to subject i’s and is necessary for comparing 

brain activity between subjects in a common cortical space.  

Inter-subject training of brain activations is carried out 

through the morphing of estimated current dipole activity 

from each subject in a training pool (subjects 1 to N) to the 

subject of interest (subject N+1) using the transformation 

matrices. Importantly, this implies that the pooled approach 

will be training to recognize brain activations for subject 

N+1 without subject-specific training data from subject N+1 

(see Fig. 2). The transformation of an activated ROI from 

the pooled training on subjects 1 to N is not likely to yield 

perfect overlap once the corresponding ROI is determined in 

the subject-of-interest’s source space. Rather than select a 

subset of the most common current dipoles for classification, 

we employ a weighted average. The mean position of all the 

transformed dipoles is calculated in the subject of interest’s 

spherical brain space and an exponential decay (based on the 

distance from this centroid) is computed. Dipoles closest to 

the centroid are assigned a near-unity weight, while dipoles 

far away are assigned a near-zero weight (see Fig. 2 Bottom 

Right). Because every individual dipole is assigned a weight, 

the weight matrix W can be multiplied by G to obtain a 

weight for the EEG electrodes.  

In this binary classification (active or rest) scheme, EEG 

activity in an equal number of conditions is used to train a 

regularized linear discriminant analysis (LDA) classifier. 

This classifier was chosen because of its widespread use in 

BCIs and relatively straightforward implementation. 

Furthermore, our motivation was rooted in finding relative 

differences between classifications of the standard and 

exponential weighting approach and not in the absolute 

performance achieved by a specific classifier. The 

exponential weighting approach was evaluated against a 

standard leave-one-(trial)-out cross-validation benchmark. 

Briefly, this standard cross-validation approach involves 

training on all but one trial and testing on the excluded trial 

in an iterative manner that cycles through the entire data set. 

These classification schemes were assessed under a variety 

of SNRs and two training set sizes. SNRs ranged from -25.0 

decibels (dB) to -5.0 dB in 2.5 dB steps, with training set 

sizes of 10 or 40 trials. The lowest training set size (10 trials) 

and the most common synchronous training set size (40 

trials) were selected to show performance gains with few 

trials and a common training set size, respectively. 

 

 

 
 

Figure 1: Distributed current model and simulation of 

activity. Dipole sources in the brain (Top) are activated in 

different ROIs (Bottom Left) and projected onto the scalp 

(as     , Bottom Middle) of different participants to 

simulate engagement in a task. These EEG scalp potentials 

can then be projected back to the cortical surface (as  

 ̂     , Bottom Right). 
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III. RESULTS 

To determine the effect of exponentially weighting prior 

to classification, it was evaluated against a standard leave-

one-out cross-validation procedure. Brain maps illustrating 

ROI performance in select conditions are shown in Fig. 3. 

The six SNRs closest to the 60-80% performance window in 

the 10- and 40-trial training set sizes are displayed since 

these correspond to typical motor BCI performance. Note 

that the largest performance boosts occurred at low SNRs 

(toward the left) and with small training sets (top row). 

Furthermore, performance gain varies as a function of 

cortical location. For example, classification of activities in 

the dorsolateral prefrontal cortex—an executive control 

hub—receives a performance boost across all conditions 

tested, while the premotor cortex does not receive much 

benefit in this approach. 

IV. DISCUSSION 

Here we demonstrate that transforming brain activations 
across subjects improves activity classification when there 
are few or noisy training trials. While the implementation of 
a non-uniform weighting approach may yield better 
performance across cortex, it is especially likely to improve 
performance in areas that have complex folding patterns. The 
prefrontal cortex compared to the motor strip, for example, 
has more complex sulcal-gyral folding, and this folding is 
more variable across subjects. Using a surface-based non-
linear mapping between subjects could help compensate for 
these sources of variability. The approach outlined here could 
potentially be used to translate neuroscience insights 
regarding significant regions of neural activity that are 
conserved across subjects (a typical neuroimaging finding) 
into useable signals for BCI designs. Ideally, the final 
training solution would require only a structural MRI scan 
and coregistration with the EEG electrodes to complete the 
training prerequisite for each new user (given an existing 
data pool). If classification performance proves comparable 
in the transition from synthetic data to actual EEG 
recordings, this methodology would reduce or eliminate the 
need for a subject-specific trial-based calibration session 
before every use of a BCI. 

 

 
 

 

 

 
Figure 3: The performance gains of individual ROIs in the exponentially weighted classification compared to standard leave-one-out. The rows 

represent training set sizes of 10 and 40 trials, while the columns are SNRs (-20 to -5 dB in 2.5 dB steps). Hot colors represent a performance gain 
relative to the standard classifier (yellow is 25%), blue represents a performance deficit (with light blue representing -25%) and gray (see-through) 

being equal performance. Note performance changes vary as a function of anatomical region (e.g., increases across all set sizes and SNR in the 

dorsolateral prefrontal cortex [DLPFC]). 
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Figure 2: Data from subjects 1 to N are mapped onto Subject N’s space 

using a spherical morphing procedure. Individual source spaces (top row) 
are first morphed into a spherical space (second row). Next, spherical brains 

from subjects 1 to N are transformed to the N+1 subject’s brain space using 

sulcal-gyral alignment in spherical space (third row). The ROIs (black, 
turquoise, blue, and purple patches) are unlikely to match up perfectly, so a 

center of mass is computed for the spatial exponential weighting. The N+1 

subject’s brain is morphed out of spherical space (bottom left). Exponential 
weighting (bottom right) is used for compensating for inter-subject 

variability. 

DLPF
C 

40 

10 

Trial
s 

-20 -17.5 -15 -12.5 -10 -7.5 -5 

SNR (dB) 

+25% 

-25% 

Transformed 

ROIs 

Subject 1 

Transformation 

Subject 

N+1 

Subject N 

Exponential 

Weight Map 

Spherical Morphing 

2810



  

Our approach presented here would be useful for 
incorporating important signals to drive hearing aids in the 
future. For example, a recent study found that the right 
temporoparietal junction is more active when a subject 
switches spatial attention compared to maintaining attention 
in one location [11]. Through new neuroimaging studies, 
many hearing aid control signals regarding a user’s intention 
will be mapped. Although the origin of these control signals 
is still an active area of research, they are likely to originate 
from areas such as the prefrontal cortex. While these 
principles have yet to be developed into a patient-usable 
device, recent developments in mobile EEG platforms make 
our brain-state classification approach poised to translate 
these new neuroscience discoveries into real-world solutions. 

V. CONCLUSION 

While the scientific quest to map human brain function 

has exploded in the last two decades, the ability to link 

patterns in EEG signals to specific cognitive states remains 

elusive, owing perhaps to limited crosstalk between the 

fields of neuroscience and engineering. We hope that the 

anatomical based approach described here will inspire new 

innovative brain-state classification methods that can be 

incorporated in future hearing-aid designs, as well as other 

augmentative and rehabilitative devices relevant to the 

speech and hearing sciences domain and beyond. 
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