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Abstract²³Semantic gap´ is the major bottleneck of 

semantic-based multimedia retrieval technique in the field of 

information retrieval. Studies have shown that robust 

semantic-based image retrieval can be achieved by single-trial 

visual evoked event related potential (ERP) detection. However, 

the question remains whether auditory evoked ERP can be 

utilized to achieve semantic-based sound retrieval. In this paper, 

we investigated this question in the rapid serial auditory 

presentation (RSAP) paradigm. Eight BCI-naïve participants 

were instructed to perform target detection in RSAP sequences 

with the vocalizations of 8 familiar animals as sound stimuli, and 

we compared ERP components and single-trial ERP 

classification performance between two conditions, the target 

was a predefined specific one, and the targets were different but 

belonged to the same semantic category (i.e., semantic-based 

sound retrieval).  Although the amplitudes of ERP components 

(e.g., N2 and P3) and classification performance decreased a 

little due to the difficulty of the semantic-based sound retrieval 

tasks, the best two participants still achieved the area under the 

receive operating characteristic curve (AUC) of single-trial ERP 

detection more than 0.77. It suggested that semantic-based sound 

retrieval by auditory evoked ERP was potentially feasible. 

I. INTRODUCTION 

The explosively growing of multimedia information in 
internet era brings challenges to retrieve multimedia objects 
fast and accurately. Due to the poor ability of text in 
describing the rich semantic information of multimedia 
objects, the traditional text-based multimedia object retrieval 
technique is gradually replaced by semantic-based retrieval 
technique. Semantic-based retrieval extracts low-level visual 
and auditory features of the multimedia objects so as to 
understand the high-level semantic concepts of the objects 
that matches the retrieval requests [1]. However, due to the 
³semantic gap´ between the low-level visual and auditory 
feature space that computers can understand and the 
high-level semantic concept space of humans, it¶s very 
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difficult for computers to understand the high-level semantic 
concepts of the multimedia objects like humans [2]. Although 
people use some methods like ontology inference or machine 
learning to bridge the semantic gap, the results are still far 
from satisfaction [3, 4]. 

An event-related potential (ERP) is a brain response 
time-locked to an event [5]. Previous studies have reported 
that some components of ERP (e.g., N400 and P3) are related 
to semantic search and target detection [6, 7]. Some 
researchers take advantage of this characteristic of ERP, and 
try to use human intelligence (some ERP components 
time-locked to an event onset) in the implementation of 
semantic-based rapid retrieval of multimedia objects. For 
example, Paul Sajda and his colleagues tried to combine 
electroencephalogram (EEG) and technology of computer 
vision to retrieve images belonging to a specific semantic 
category [8]. However, semantic-based retrieval of sound, 
which is another important component of multimedia, has not 
been fully explored and is still under investigation. Some work 
shows that brain-computer interfaces (BCIs) based on 
auditory evoked ERP are not as robust as visual ERP-BCIs [9], 
which suggests that it would be more difficult to retrieve 
sounds than images based on ERP. 

We are interested in the question ³Is it possible to achieve 
robust semantic-based sound retrieval by auditory evoked 
ERP?´ In the current study, we investigated this question in 
the rapid serial auditory presentation (RSAP) paradigm. Eight 
BCI-naïve participants were instructed to perform target 
detection by button clicking in RSAP sequences, and the EEG 
signals were simultaneously collected. The potential 
feasibility of semantic-based sound retrieval based on 
auditory evoked ERP was explored by comparing ERP 
components between two conditions, the target was a 
predefined specific one, and the targets were not specific but 
belonged to a certain semantic category (i.e., semantic-based 
sound retrieval). We also used the linear discriminant analysis 
(LDA) based AdaBoost classifier to detect single-trial ERP in 
both conditions, and used area under receive operating 
characteristic curve (AUC) to evaluate the classification 
performance [10, 11].  

II. METHODS 

A. Experiment Design and Data Acquisition 

Eight BCI-naive participants (all males, aged 22-24, all 
right-handed) participated in this study. No participant had a 
history of psychiatric or neurological illnesses, and all 
reported normal hearing. All participants gave written 
informed consent. 
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The sound stimuli included 120 different vocalizations of 
8 familiar animals (frog, fish, dog, tiger, horse, cat, bird, sheep; 
15 different exemplars for each animal). Preliminary 
experiment verified that these vocalizations could be 
recognized in a very short time (636±24 ms after target 
stimulus onset) with very high accuracy (90.5±1.3 percent hit 
rate in target detection). All of these 120 vocalizations were 
then modified so that they were 500 ms in duration, digitized 
at 22,050 Hz, 16-bit stereo and saved as WAV format. 10-ms 
rise/fall times were included to minimize clicks at sound onset 
and offset. Finally, all vocalizations were normalized. 

Participants were required to minimize eye and body 
movements, and were asked to perform target detection tasks 
in the RSAP paradigm. Sound stimuli were presented at a rate 
of 1 Hz with a constant inter-stimulus interval (ISI) of 500 ms 
through an insert earphone. One of the eight animals 
mentioned above was randomly selected as the target in a 
block (e.g. µDuring this block, press the button to frog croak¶). 
Participants were instructed to press left mouse button when a 
target (e.g. µfrog croak¶) was detected. Each block consisted 
of 10 consecutive random sequences of stimuli, i.e. 10 trials. 
In each trial, a vocalization of each animal was presented once 
respectively. To ensure the quality of ERP, vocalizations 
belonging to the same animal did not occur in a row between 
two consecutive trials. Therefore, a block was made of 80 
sound stimuli, in which the 10 sound stimuli of each nontarget 
animal differed from one another which were randomly 
chosen from the 15 exemplars, while the composition of the 
10 sound stimuli of target animal varied in 2 conditions: 

1) Condition I, ³semantic-based target detection´. Just like 
the nontarget stimuli, the 10 sound stimuli of target animal 
differed from one another which were randomly chosen from 
the 15 exemplars of target animal. In other words, the target 
stimuli belonged to the same semantic category (the target 
animal), but varied in a block; 

2) Condition II, ³specific target detection´. One exemplar 
was randomly chosen from the 15 exemplars of the target 
animal and served as target stimulus. So target stimuli were 
constant in a block (i.e., the same target stimulus would be 
repeated 10 times in a block). Prior to a block, the randomly 
chosen target stimulus was presented to the participant so as to 
make him/her clear what the specific target was. 

The whole experiment was divided into 4 sessions (two 
per condition). The order of the sessions was counterbalanced 
across participants. Each animal served as the target once in a 
session, in randomized order both within and between 
participants, making the experiment composed of 32 blocks in 
total. Prior to the experiment, participants were made familiar 
with all the sound stimuli materials and the task. Breaks were 
encouraged between sessions to minimize fatigue and eye 
movements. The entire experiment lasted about 2.5 h. 

The EEG of all participants while performing the tasks 
were recorded by 60 Ag/AgCl electrodes (impedances < 30 
k
) at a sample rate of 1000 Hz, referenced to the nose, with a 
200 Hz low-pass filter and 50 Hz notch using Neuroscan 
Synamps system. Electrode positions included the standard 
10-20 system locations and intermediate positions. Blinks 
were monitored with vertical electrooculogram (EOG) 

recorded from electrodes located above and below the left eye. 
Electrode AFz served as grounding electrode. 

B. Data Analysis and Single-Trial EPR Detection 

Button-press responses falling between 300 and 1000 ms 
post target stimuli onset were considered correct. Blink 
artifacts were removed from EEG data by correlation between 
EEG and EOG. Then the EEG data were band-pass filtered 
from 0.5 to 30 Hz using a second order Butterworth filter. For 
further analysis, EEG data were epoched from 200 ms before 
to 800 ms after stimuli onset, with the average of the first 200 
ms as baseline. The epochs corresponding to incorrect 
judgments were excluded from ERP analysis. And the epochs 
contaminated by excessive eye movements or other artifacts 
were also discarded as amplitudes exceeding ±80 µv in any 
EEG channel. Accepted EEG epochs were averaged 
according to condition (semantic-based target detection, 
specific target detection) and stimulus type (target stimulus, 
nontarget stimulus) from each participant to compute the ERP. 
For identification of ERP components and display purposes, 
grand group-average ERPs for each of the conditions and 
stimulus types were also computed. It should be noted that no 
epoch was rejected in classification analysis, the 
above-mentioned rejection criteria of EEG epochs was only 
applied in ERP analysis. 

To define the auditory evoked ERP components which 
were significantly related to attention shift and target 
detection, firstly, the averaged nontarget epoch was subtracted 
from the averaged target epoch to get the difference wave for 
each participant and condition. Then, we performed 
point-wise running t-tests (two-tailed) to compare the 
amplitudes of the difference waves to zero at each electrode 
for each condition. Significance effects of stimulus type 
(target, nontarget) were defined as at least 40 consecutive data 
points reaching the 0.05 significance level (40 data points = 
40 ms at a 1000 Hz sample rate) [12]. According to the 
statistical significance of the difference waves, we identified 
all auditory evoked ERP components significantly related to 
attention shift and target detection and their time windows. 
Mean amplitudes of the difference waves of the grand 
group-average ERPs were computed across these time 
windows for each electrode to define the scalp topographies of 
the ERP components. For further statistical analysis, we 
inspected the scalp topographies of the difference waves to 
find the scalp regions of maximal mean amplitudes during 
corresponding time windows. After that, we carried out the 
statistical analysis on integrated amplitude measurements of 
the difference waves averaged across the electrodes located 
on these scalp regions and corresponding time windows. 

For offline classification analysis, we used AdaBoost 
technique based on the LDA classifier to detect single-trial 
ERP. We used stepwise LDA (SWLDA) to select features for 
each electrode [13]. We conducted a 5-fold cross-validation 
for each participant and each condition, and used AUC to 
evaluate the classification performance.  

III. RESULTS AND DISCUSSION 

In this study, we analyzed the auditory evoked ERPs when 
participants performed semantic-based sound retrieval tasks 
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and explored whether the auditory evoked ERPs could be used 
to achieve semantic-based sound retrieval. 

Figure 1 shows the spatiotemporal presentations of the 
amplitudes of the grand-average difference waves for the two 
conditions. Electrodes are on the y-axis and time (ms) is on the 
x-axis. Electrodes are organized in the following order: left 
hemisphere (LH), midline electrodes, right hemisphere 
(RH).The time interval selected for analysis was from 0 to 800 
ms after stimulus onset. Figure 2 shows significant p-values 
from point-wise running t-tests for the difference waves. It 
could be seen that the difference wave of each condition 
included three prominent components: N1, N2 and P3. For 
³semantic-based target detection´ condition, the time 
windows of the three components of the difference wave were 
shown in Figure 2: 0-150 ms, 150-330 ms, 350-700 ms. While 
for ³specific target detection´ condition, the time windows 
were: 0-150 ms, 150-300 ms, 300-670 ms. Figure 3 shows the 
scalp topographies of these components. It can be seen that the 
scalp topographies of the two conditions were very similar in 
morphology, so the statistical analysis of the difference waves 
was carried on the same scalp regions for the two conditions. 

(a) 

 

(b) 

 

Figure 1. Spatiotemporal presentations of the amplitudes (µv) of the 

grand-average difference waves for the two conditions. (a) Semantic-based 

target detection. (b) Specific target detection. 

(a) 

 

(b) 

 

Figure 2. Spatiotemporal presentations of significant p-values from 

point-wise running t-tests for the difference waves of the two conditions. The 

time windows of N1, N2, P3 are flagged. (a) Semantic-based target detection. 

(b) Specific target detection. 

 N1 N2 P3 

(a) 

   

(b) 

   

Figure 3. Scalp topographies of the grand-average difference waves of the 

two conditions.  (a) Semantic-based target detection. (b) Specific target 

detection. 

The N1 appeared maximal over centro-parietal (CP1, CPz, 
CP2), and parietal (P1, Pz, P2) sites, two-tailed paired t-test 
revealed there was no significant difference between the two 
conditions for the average amplitudes across these six 
electrodes (CP1, CPz, CP2, P1, Pz, P2) and corresponding N1 
time windows (mean = -1.17 µv vs. mean = -0.94 µv for 
³semantic-based target detection´ versus ³specific target 
detection´; t(7) = -1.11, p > 0.3). The N2 appeared maximal 
over fronto-central (FC3, FC1, FCz), central (C3, C1, Cz) and 
centro-parietal (CP3, CP1, CPz) sites, one-tailed paired t-test 
revealed that the average amplitudes across these nine 
electrodes (FC3, FC1, FCz, C3, C1, Cz, CP3, CP1, CPz) and 
corresponding N2 time windows were greater for ³specific 
target detection´ condition (mean = -3.39 µv) than for 
³semantic-based target detection´ condition (mean = -2.31 µv; 
t(7) = 2.68, p < 0.05).The P3 appeared maximal over parietal 
(P1, Pz, P2) and parieto-occipital (PO3, POz, PO4) sites, 
one-tailed paired t-test revealed that the average amplitudes 
across these six electrodes (P1, Pz, P2 PO3, POz, PO4) and 
corresponding P3 time windows were greater for ³specific 
target detection´ condition (mean = 4.62 µv) than for 
³semantic-based target detection´ condition  (mean = 3.63 µv; 
t(7) = -4.81, p < 0.001). 

In above-mentioned ERP analysis, the high similarity of 
scalp topographies between the two conditions revealed that 
whether the targets were specific or not, to some extent, the 
activated brain regions may be the same in sound retrieval 
tasks. The N1 amplitudes did not differ significantly between 
conditions. Previous studies had reported that auditory evoked 
N1 was related to the allocation of attention resources for 
early auditory processing such as stimulus detection and 
feature encoding [14]. Therefore, we speculated that the 
attention resources employed in stimulus onset detection and 
stimulus encoding were unrelated to whether the targets were 
specific in the current experiment. The N2 amplitudes were 
significantly different between conditions, with higher 
amplitudes when the targets were specific. Previous studies 
had reported that there was a positive correlation between N2 
amplitudes and nontarget-target variation [15]. When the 
targets were specific, the sound retrieval might be more 
targeted for participants. This may make the targets more 
distinct from nontargets and then evoke greater N2. The same 
as N2, the P3 amplitudes were significantly different between  
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Figure 4. ROC curves of two participants in the ³semantic-based target 

detection´ condition. 

conditions, with higher amplitudes when the targets were 
specific. Some published articles reported that more 
confidence in target recognition was associated with greater 
P3 amplitude [16]. Participants may be more confident in 
target recognition when the targets were specific in the sound 
retrieval tasks and this may be the reason why greater P3 
amplitudes in ³specific target detection´ condition compared 
with ³semantic-based target detection´ condition. 

However, it was remarkable that two participants reached 
relatively high classification performance in ³semantic-based 
target detection´ condition with AUC >= 0.77 (Figure 4, the 
x-axis is false positive rate (FPR) and the y-axis is true 
positive rate (TPR)). In line with the weakening of N2 and P3, 
the classification performance in the ³semantic-based target 
detection´ condition decreased compared with the ³specific 
target detection´ condition (0.704±0.055 vs. 0.765±0.069 in 
average for the eight BCI-naïve participants). The 
classification performance was lower than the state of the art 
of rapid image search based on rapid serial visual presentation 
(RSVP) paradigm [17]. It may because that auditory evoked 
ERPs were not as robust as visual evoked ERPs in BCIs[9], 
and the participants in this study were selected randomly and 
had no BCI experience before. The average classification 
performance was over 0.70 in the ³semantic-based target 
detection´ condition, which indicated the possibility to 
achieve semantic-based sound retrieval relatively efficiently 
by single-trial ERP detection [18]. 

IV. CONCLUSIONS 

We are interested in whether semantic-based sound 
retrieval, which is a big challenge in information retrieval, can 
be achieved by auditory evoked ERP. In this paper, we 
investigated the amplitudes of ERP components and 
classification performance when participants performed 
semantic-based sound retrieval in RSAP tasks, compared with 
the condition in which the retrieval targets were specific. The 
amplitudes of ERP components (e.g., N2 and P3) reduced, 
which resulted in the decrease of the classification 
performance as expected. However, N2 and P3 were still 
statistically significant over the baseline, and the AUC in 
semantic-based sound retrieval task was over 0.70 in average 
for eight BCI-naive participants. Moreover, the best two 
participants achieved relatively high performance with AUC > 
0.77. The results indicated that semantic-based sound retrieval 
by auditory evoked ERP was potentially feasible. Future work 
should explore whether the natural sounds without 
normalization could be retrieved based on ERP detection. 
Furthermore, the advance in signal processing techniques and 

pattern recognition algorithms may contribute to better 
performance on semantic-based sound retrieval by auditory 
evoked ERP. 
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