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Abstract— Recent studies have demonstrated that hand 

movement directions can be decoded from low-frequency 

electroencephalographic (EEG) signals. This paper proposes a 

novel framework that can optimally select dyadic filter bank 

common spatial pattern (CSP) features in low-frequency band 

(0-8 Hz) for multi-class classification of four orthogonal hand 

movement directions. The proposed framework encompasses 

EEG signal enhancement, dyadic filter bank CSP feature 

extraction, fuzzy mutual information (FMI)-based feature 

selection, and one-versus-rest Fisher’s linear discriminant 

analysis. Experimental results on data collected from seven 

human subjects show that (1) signal enhancement can boost 

accuracy by at least 4%; (2) low-frequency band (0-8 Hz) can 

adequately and effectively discriminate hand movement 

directions; and (3) dyadic filter bank CSP feature extraction 

and FMI-based feature selection are indispensable for analyzing 

hand movement directions, increasing accuracy by 6.06%, from 

60.02% to 66.08%. 
 

I. INTRODUCTION 

Advances in neuroscience and engineering have made it 
possible for the human brain to directly communicate and 
control an external device [1]. The brain-computer interface 
(BCI) monitors electrical brain activity, detects and 
processes brainwave patterns generated by the user, and 
translates the patterns into control commands, without using 
any peripheral nerves or muscles. Such an interfacing system 
can aid individuals with physical disabilities, improving their 
quality of life and lowering social costs [2]. 

Most BCI systems use electroencephalogram due to its 
portability, inexpensive, and non-invasive nature. Since each 
human body part can be represented in a specific 
somatosensory cortical area [3], electroencephalographic 
(EEG) signals are usually acquired and analyzed during real 
or imagined movements of right hand, left hand, foot, and 
tongue, each corresponding to one control command. 
Although it is convenient to employ EEG signals of various 
body parts, the number of separable classes or control 
commands can be limited. It also seems unnatural and not 
intuitive to imagine different limb movements for controlling 
kinematics (e.g., direction and speed) of one limb. 

 Recent studies have shed light on classifying or 
decoding hand movement directions from EEG signals [4-9]. 
Low-frequency band (≤ 7 Hz) was strikingly found to be 
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more efficient in decoding movement directions and limb 
trajectories than beta band (10-30 Hz) and high-gamma band 
(62-87 Hz) [5,6]. Waldert et al. [5] decoded joystick 
movements in a four-target center-out paradigm and reported 
an accuracy of 55%. Demandt et al. [7] conducted four 
center-in arm reaching tasks and observed slightly above-
chance decoding accuracy for center-in and center-out 
paradigm separately. Clauzel et al. [8] examined joystick 
movements in orthogonal and diagonal directions, and 
obtained an average binary classification accuracy of roughly 
71%. This accuracy (≈ 71%) was also reported by Robinson 
et al. [9] after using a regularized wavelet common spatial 
pattern (CSP) to distinguish one orthogonal direction from 
another direction. This paper proposes a novel framework 
that can optimally select dyadic filter bank CSP features in 
low-frequency EEG band (0-8 Hz) for multi-class 
classification of four orthogonal hand movement directions. 
In doing so, we hope to improve the accuracy of classifying 
multiple hand movement directions, thereby providing more 
control commands and enhancing the naturalness and 
intuitiveness of brain-computer interaction. 

This paper is organized as follows. Section II 
systematically describes the proposed framework, which 
includes EEG signal enhancement, dyadic filter bank CSP 
feature extraction, fuzzy mutual information-based feature 
selection, and one-versus-rest Fisher’s linear discriminant 
analysis. Section III presents the multi-class classification 
results of this study and several comparison tests, followed 
by a discussion with concluding remarks in Section IV. All 
analysis was performed via MATLAB (version 2011b) 
unless otherwise stated. 

II. METHODS 

A. Data Acquisition 

EEG and electrooculographic (EOG) signals were 
acquired from seven healthy right-handed male subjects at 
the Institute for Infocomm Research, Singapore, using a 128-
channel amplifier (Neuroscan SynAmps) sampling at 250 
Hz. To ensure precise hand position during data acquisition, 
a MIT-MANUS robot [10] was adopted. Target cues and 
feedback were also provided on a computer screen, as 
exemplified in Fig. 1 for the ‘east’ or ‘right’ hand movement. 
At the end of each rest period, a target cue, which was 
symbolized by a circle located in any of the four orthogonal 
directions (north, south, east, and west, or equivalently, up, 
down, right, and left), was displayed. This cue allowed the 
subject to prepare and execute his/her hand movement 
immediately the center circle disappeared. After the 
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execution, a cross appeared at the target, which served as a 
feedback to the subject. A successful trial was indicated by 
reappearance of the center circle. The display then returned 
to home screen, and this cycle was repeated. Each subject 
underwent two sessions of 50 cycles each. Each cycle 
consisted of four orthogonal directions presented in a 
randomized order. Upon data acquisition, signals from 34 
EEG channels, covering the frontal, central, parietal, and 
occipital regions, as well as two EOG channels were studied. 

B. Electroencephalographic Signal Enhancement 

To improve the quality of the acquired EEG signals, we 
eliminated three environmental and biological artifacts 
embedded in the signals. Firstly, power-line interference at 
50 Hz was reduced using a 2nd-order infinite impulse 
response notch filter. Next, eye movements and blinks were 
minimized through Infomax independent component analysis 
[11], which maximizes the joint entropy of EEG and EOG 
signals while lowering their statistical dependence. A 
stopping weight change of 10

-8
 was set in the analysis for 

better output signals. Lastly, electromyographic (EMG) 
activity during hand motion was suppressed using a surface 
Laplacian spatial filter [12]. The filter, which amplifies 
localized EEG activity and dampens diffused EMG activity, 
was estimated by a finite-difference method that subtracts the 
mean activity of neighboring electrodes from the electrode of 
interest [12]. 

C. Common Spatial Pattern Feature Extraction 

Upon signal enhancement, we segmented the lengthy 
signals into two-second segments, each containing 
information on the last one second of preparation and the 
first one second of execution, giving over a hundred single-
trials for each subject. For each single-trial, the enhanced 
signal was downsampled to 128 Hz in order to reduce the 
computation cost and then decomposed using causal digital 
filters, namely Butterworth (4th-order, zero-phase lag) and 
Chebyshev Type II (passband ripple 3dB, stopband 
attenuation 20dB) that are extensively utilized in BCI 
[5,7,8,13]. We configured the Butterworth and Chebyshev 
filter banks in a dyadic manner such that dL1 = 32-64 Hz, 
dL2 = 16-32 Hz, dL3 = 8-16 Hz, dL4 = 4-8 Hz, dL5 = 2-4 
Hz, dL6 = 1-2 Hz, and dL7 = 0-1 Hz. In comparison to the 

wavelet filtering technique used in [9], the present technique 
processes faster, which favors real-time implementation.  

Subsequently, the subband filtered signals were spatially 
filtered using CSP algorithm [14], which augments the 
difference between variances of two classes with respect to 
the brain topographic mapping. The spatial filtered signal of 

ith trial in bth subband is uc

ib

T

bib




,,
EWZ ,  where Wb is 

the transformation matrix, Eb,i is the subband filtered signal, 
c is the number of channels, u is the number of samples per 
channel, and T is the transpose operator. The transformation 
matrix is obtained by solving the eigenvalue decomposition 
problem   
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where Cb,1 and Cb,2 are the covariance matrices of two classes 

of hand movement directions, and Db is the diagonal matrix 

containing Cb,1 eigenvalues. Next, m pairs of CSP features of 

ith trial in bth subband are given by 

     
b

T

ibib

T

bb

T

ibib

T

bib
WEEWWEEWv
~~

tr
~~

diaglog
,,,,,

 , (2) 

where m

ib

21

,


v ,

b
W
~

denotes the first m and last m 

columns of Wb. In this study, we chose a typical value of m = 

3 because, if m is too small, the classifier may fail to fully 

capture the discrimination of two classes; conversely, if m is 

too big, the classifier may overfit the training data, lessening 

its predictive accuracy [15]. Accordingly, the dyadic filter 

bank CSP feature vector for low-frequency band of ith trial 

is constructed by 
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CSP feature vectors for wider frequency bands (0-16 Hz, 0-
32, and 0-64 Hz) were also formed to verify the sufficiency 
and effectiveness of low-frequency band in classifying hand 
movement directions. 

D. Fuzzy Mutual Information-based Feature Selection 

To alleviate the curse of dimensionality and optimize 

class separability, we discarded irrelevant and redundant 

CSP features from the estimation of intrinsic relation 

between EEG attributes and control commands using fuzzy 

mutual information (FMI) between each CSP feature f and 

class label L across all n training trials, 

        LfHLHfHLfI ,;  , (4) 
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is the marginal entropy of each feature,  
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is the marginal class entropy, nl is the number of training 

trials belonging to lth class, and 

 

Figure 1.   Experimental protocol and timeline 
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is the joint fuzzy entropy satisfying the De Luca-Termini 

axioms [16,17], and Al is the set of training trials belonging 

to lth class.  
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is the fuzzy membership of kth trial vector in lth class, with a 

fuzzification parameter λ = 2, ε = 2.22×10
-16

 to avoid 

singularity, and a standard deviation σ for calculating 

Euclidean distance between the mean of training trials 

belonging to lth class and the training trials in kth vector. 

We sorted CSP features in descending order of FMI and 

removed the last r features that have less discriminatory 

power, retaining useful CSP features for robust 

classification. Hence, CSP feature vector for low-frequency 

band of ith trial is reduced to  r

i,
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E. One-versus-rest Fisher’s Linear Discriminant Analysis 

As this study involves classifying four orthogonal hand 

movement directions (right, left, up, and down), we modeled 

four binary Fisher’s linear disciminant (FLD) classifiers, 

each separating one class from the rest of the classes [18]. 

Each binary classifier possesses a functional form 
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g xwx  where xi is the ith training trial with 

selected CSP features.  
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is the within-class covariance matrix [19]. Given four FLD 

binary classifiers, the final classification was executed by 

assigning xi to the classifier with the highest confidence. To 

better appraise the performance of the FLD classifiers for 

multi-class classification, we conducted five consecutive 

times of five-fold cross-validation and noted the average 

accuracy value. 

III. RESULTS 

Based on our dataset of seven subjects, Table I 
summaries the average multi-class classification accuracies 
for different filtered signals without and with enhancement. 
It can be seen that EEG signal enhancement boosts the 
classification accuracy by at least 4%. A low-frequency band 
of 0-8 Hz (delta and theta) is also found to be adequate and 
more effective (mean accuracy about 1% higher) in 
discriminating hand movement directions than wider 
frequency bands containing alpha, beta, and/or gamma, 
which supports the findings in earlier studies [4-9]. 

 

 

Moreover, CSP features extracted from Chebyshev Type 
II dyadic filter bank consistently outperform that from 
Butterworth dyadic filter bank by an average of 4.75% 
(range 4.06% to 5.35%), which is likely attributed to its 
frequency response characteristics that can well capture the 
properties of EEG signals. At 0-8 Hz, Chebyshev CSP 
achieves an accuracy of 60.02%, whilst Butterworth CSP 
yields only 54.88%. 

The separability of hand movement directions can be 
further improved by the FMI-based feature selection. As 
illustrated in Fig. 2, the average classification accuracy 
substantially rises by 6.06%, from 60.02% to 66.08%, after 
removing 20 out of 24 Chebyshev dyadic filter bank CSP 
features at low-frequency band, which is equivalent to 
retaining or selecting the four most informative CSP features 
for classification. A close inspection of Table II also reveals 
that the FMI-based feature selection can increase the 
classification accuracy of every subject, in the range of 
2.43% to 9.38%.  

To further appraise the performance of the proposed 
framework, we compared its classification accuracy  
(66.08%) with that of a typical framework consisting EEG 
signal enhancement, low-pass filtering at 8 Hz using 
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Figure 2.   Performance of multi-class classification for different number 

of Chebyshev dyadic filter bank common spatial pattern (CSP) features 

removed at low-frequency band (0-8 Hz) 

TABLE I.   PERFORMANCE OF MULTI-CLASS CLASSIFICATION FOR 

DIFFERENT FILTERED SUBBAND SIGNALS WITHOUT AND WITH 

ENHANCEMENT 

 

Multi-class classification accuracy (%) 

Without signal 

enhancement 
With signal enhancement 

Filter 

types 
0-8 Hz 0-8 Hz 0-16 Hz 0-32 Hz 0-64 Hz 

Butter 
47.93 

(8.43)    

54.88† 

(8.73) 

53.66 

(8.57) 

53.99 

(8.59) 

54.84 

(8.37) 

Cheby 
55.91 

(8.30) 

60.02† 

(8.57) 

59.01 

(8.49) 

58.44 

(8.46) 

58.90 

(8.69) 

Values are presented as mean and standard deviation in parentheses. Symbol 

† indicates the maximum value in column. Butter and Cheby refer to 4th-

order Butterworth filter and Chebyshev Type II filter, respectively.  
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Chebyshev Type II filter, CSP feature extraction at m = 1, 2, 
3, 4, or 5, and one-versus-rest FLD discriminant analysis. 
Using the same dataset, comparison results confirm that the 
proposed framework, which encompasses dyadic filter bank 
CSP feature extraction and FMI-based feature selection, is 
superior to the typical one whose accuracies are 53.32%, 
59.07%, 61.82%, 62.08%, and 62.39% for corresponding m 
= 1, 2, 3, 4, and 5 pairs of CSP features. 

IV. DISCUSSION 

This study proposes a novel framework that can 
optimally select dyadic filter bank CSP features in low-
frequency EEG band (0-8 Hz) for multi-class classification 
of four orthogonal hand movement directions, which was not 
considered in the earlier studies, to the best our knowledge. 
The framework encompasses EEG signal enhancement, 
dyadic filter bank CSP feature extraction, FMI-based feature 
selection, and one-versus-rest FLD analysis. Experimental 
results first highlight the importance of enhancing EEG 
signals by discarding both environmental and biological 
artifacts prior to signal analysis; the classification accuracy is 
improved by at least 4% after the EEG signal enhancement. 

In addition, dyadic filter bank CSP feature extraction and 
FMI-based feature extraction are indispensable for analyzing 
hand movement directions, which information can be found 
in low-frequency band (0-8 Hz). The FMI can play a vital 
role in estimating the intrinsic relation between EEG 
attributes and control commands, thus optimizing the 
selection of CSP features for more desirable outcomes 
(accuracy 6.06% higher). Moreover, computational cost for 
estimating mutual information using fuzzy membership, as in 
this study, is lesser than histogram estimators and Parzen 
kernel density estimators [16], making it more suitable for 
real-time applications. 

Moving forward, we attempt to enlarge the pool of 
subjects for more convincing results, implement the 
proposed framework in real-time, and extend this study to 
imagined hand movement directions. 
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 Multi-class classification accuracy (%) 

Subject 
Without FMI-based 

feature selection (r = 0)  

With FMI-based 

feature selection (r = 20) 

1 79.63 ± 8.17 86.38 ± 5.84 

2 54.25 ± 11.26 61.13 ± 7.97 

3 72.13 ± 7.16 78.13 ± 9.59 

4 56.25 ± 8.41 65.63 ± 8.84 
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