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Abstract— Brain-Computer Interfaces provide a direct com-
munication channel from the brain to a technical device. One
major problem in state-of-the-art BCIs is their low communica-
tion speed. BCIs based on Codebook Visually Evoked Potentials
(cVEP) outperform all other non-invasive approaches in terms
of information transfer rate. Used only in spelling tasks so far,
more flexibility with respect to stimulus structure and proper-
ties is needed. We propose using hierarchical codebook vectors
together with varying color schemes to increase the stimulus
flexibility. An off-line study showed that our novel hcVEP
approach is capable of discriminating groups of targets after
only 250ms of stimulus flickering and the final target within the
group after 1s. The accuracies are 81% and 67%, respectively.
Different color schemes (black/white and green/red) are equally
effective.

I. INTRODUCTION

Brain-Computer Interfaces promise to provide a commu-

nication channel for patients who have lost motor control.

By directly measuring the electrical fields of the subject’s

brain with an EEG, all traditional neuro-muscular commu-

nication paths are circumvented. This provides a method of

communication to patients who are unable to communicate

by other means. But after two decades of intensive research,

these devices are still quite slow for practical applications

[1], [2].

Recently, the codebook visually evoked potential (cVEP)

has been rediscovered [3], [4]. cVEP denotes a particular

activation pattern over the primary visual cortex (PVC)

triggered by a stimulus flickering according to a pseudo-

random pattern. This pattern is fixed by a so-called codebook

vector, which contains binary values that indicate whether or

not a stimulus is active at a given frame. They are generated

by an m-sequence which is shifted for each stimulus, firstly

described in [5]. While up to 32 stimuli flicker simultane-

ously according to different codebook vectors, a brain wave

can be detected which corresponds to the stimulus the subject

gazes at. Only 1.05 s of flickering are needed to detect the

target reliably (> 90% accuracy) in a spelling task. This

scheme is similar to the better known SSVEP potential ([6],

[7]), but cVEP allows for more simultaneous targets and does

not need extra LED panels for stimulus presentation.

cVEP-based BCIs are dependent BCIs, because the user

must necessarily fixate the flickering target with his eyes.
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Fortunately, many patients suffering from neuromuscular

diseases still have oculomotor control [8].

Previous studies have shown that cVEP-based BCI achieve

high information transfer rates of more than 130 bits/min.
These approaches have in common that they utilize only

spelling matrices with a fixed number of targets and are

thus rather restricted in terms of possible applications beyond

spelling. More complex control scenarios like wheelchair

navigation or robot control demand more flexibility with

respect to the structure and the properties of the stimulus

presentation.

As a first step we investigate three questions. Firstly, can

the codebook vector be constructed in such a way that it is

possible to very rapidly (250 ms) detect the general area at

which the subject gazes, while preserving the classification

accuracy? This would, for example, make it possible to initi-

ate robot movement roughly in the right direction right at the

beginning of detecting the subject’s intention. To accomplish

this rapid detection of the general area, we split the decision

of the classifier system into two parts. First, the general area

and second the specific item within the area. Secondly, can

a green/red flicker be detected as reliably as a black/white

flicker in terms of classification accuracy? This would allow

to use different colors for the stimuli wherever appropriate.

And thirdly, is one of the two conditions less exhausting for

the subjects? This will be measured a) by a questionnaire

answered by each subject directly after the experiment. This

provides a subjective measure of exhaustiveness; and b) by

the Galvanic Skin Response (GSR) of the subject, which

is recorded during the experiment. GSR is often used as a

physiological, objective measure of the level of excitation

and stress [9]. Psychologists assume that a green/red flicker

is less exhausting [5], but still this has not been tested in

cVEP-based BCIs.

We used 16 targets for this study and split them into 4

areas or groups, which means that both classifier stages had

to solve a 4-class problem. This allows for more flexibility

when constructing the codebooks. We discuss this, along

with the classification scheme, in the next section.

II. METHODS

A. Hierarchical Codebook and Classification

To rapidly detect the general area where the subject is

gazing at, we split the 16-targets into 4 groups, according

to Figure 1. Additionally, the figure shows the non-target

stimuli in the surroundings which are matching neighbors

for the second classification stage. A detailed discussion of

the neighbor problem can be found in [5].
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Fig. 1. Stimulus presentation of the cVEP system for navigation tasks.
The 16 target symbols in the middle area show 12 navigation arrows and 4
four typical menu items: accelerate, open menu, decelerate, on/off. The thin
gray lines indicate the division of the items into 4 general areas. These lines
are not part of the real stimulus presentation. The surrounding stimuli are
non-target stimuli which are added to have correct direct neighbors for each
target stimulus. Top image shows the stimuli for the black/white condition,
bottom image shows the stimuli for green/red condition.

Fig. 2. Hierarchical codebook example. The four rows are four targets.
In this example only 4 bits are used in each segment. Segments 1 and 3
and segments 2 and 4 are are always equal within a given target. Target
0 and 1 are in the same group and thus differ only in segment 2 and 4,
where instead of shifting we inverted the code for this example. Target 2 is
the first item of the second group, thus its segment 1 and 3 are inverted in
relation to the two target from the first group. Target 3 accordingly is the
second target of the second group.

We propose a hierarchical two-stage system for classifica-

tion. The first classifier detects the group or area, the second

classifier the specific item within the group. To stimulate

the brain activity for this two stage system, we split the

codebook. The first part of the codebook is different between

groups and equal within the groups and the second part is

constructed the other way round. To create the codebooks

we use m-sequences according to [3]. We chose a 4-bit shift

between items resulting in a 15 bit m-sequence for the first

part and accordingly another 15 bit for the second part. We

repeated this 30 bit codebook twice and ended up with a 60

bit codebook, schematically shown in Figure 2.

In current cVEP systems the data is shifted to obtain a

one-class problem, for example in [4]. For the hierarchical

codebook this is not necessary, though. On both classification

stages only a 4 class classification problem has to be solved.

This can be done efficiently by a multi-class Support-Vector

Machine (SVM). For this study we used the SVM from

LibSVM [10] with a linear kernel and the cost parameter

set to 1. These parameters were found experimentally.The

advantage of not shifting the data is that it allows to use ar-

bitrary codebooks. In principle every set of binary codebook

vectors would do.

Before the data is classified by the multi-class SVM,

a Canonical Covariate Analysis (CCA) is applied as a

spatial filter, following other state-of-the-art cVEP ap-

proaches. The CCA finds, for given data matrices X,Y ,

the projections A,B which maximize the correlation p =
corr(AX,BY ). We set the EEG data as X , in the form

of (trials · samples)× channels and the repeated average

EEG data as Y , in the form of (k ∗ samples) × channels
where k is the number of training items. After performing

the CCA we used the projection matrix A as spatial filter.

B. Experimental Setup

10 healthy subjects completed 2 blocks each, one

black/white, one green/red, in alternating order. Each block

consisted of 480 trials. All subjects signed a written consent

and were paid for their expenditure of time.

Data was acquired using a gUSBamp (Guger Technolo-

gies) amplifier. 10 channels were equipped with Ag/AgCl

electrodes placed at P3, Pz, P4, PO3, POz, PO4, PO7,

O1, O2, PO8 according to the extended international 10-

20 system and referenced at Oz. Electrode impedances were

kept below 5 kΩ. The amplifier sampled the EEG data at

600 Hz, performed high-pass filtering at 1 Hz and notch

filtering at 48− 52 Hz.
We used 16 navigation symbols as stimuli, instead of

letters for a spelling task. The stimuli were presented on

a 19" CRT running at a resolution of 800x600 pixels and

a frequency of 60 Hz. In the black/white condition the

stimulus was rendered bright white when the codebook

vector was 1 for this frame and not rendered when the

codebook vector was zero. The background was completely

black. In the green/red condition the background was also

black. Around each stimulus, though, a green rectangle was

rendered regardless of the codebook. If the codebook was 1

for the actual frame the stimulus was rendered in red onto the

rectangle (see 1). Otherwise the stimulus was not rendered.

Timestamps were acquired using a photo-resistor attached to

the screen.

The Galvanic Skin Response was measured at the left hand

to asses which condition (one black/white, one green/red)

was more exhausting. Additionally, the participants were

asked to fill in a questionnaire that contained questions on

their subjective experience with the task.

III. RESULTS

We evaluated the study mainly with regard to the clas-

sification accuracy. To do so, the data set was split into

a training and a testing set, the latter containing 160 and

the former 320 items. The accuracy was measured as the
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Fig. 3. Classification accuracy for the two sessions for all subjects and the
average. The gray line indicates the chance level.
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Fig. 4. The EEG data of each trial is split into four segments according
to the four segments of the hierarchical codebook.

percentage of correctly classified items on the testing set

given an SVM trained on the training set. Training and

testing was performed on a per-subject basis. Figure 3 shows

the overall classification accuracies per subject and session.

Three subjects achieve good classification rates (>80%) and

four other subjects reach usable classification rates of about

70%. Three subjects do not achieve control over the system,

however, their classification results are still way better than

chance. In total, the system correctly classifies 67% of the

trials on average, nevertheless, the variance is quite high. If

we exclude the three non-performing subjects the average

increases to 78%.

A. Hierarchical Codebook

The EEG data is split into four segments according to Fig-

ure 4 for further analysis. Classifier training and evaluation is

then done for each segment seperatly. The accuracies of the

four distinct segments are plotted in Figure 5. The general

area can be detected with an accuracy of 81% on average,

using only the first 250 ms which corresponds to the first

segment.

Additionally, the classifier for the general area (first stage)

achieves a better classification than the classifier for the

specific item (second stage). Figure 6 shows the separate

accuracies of the two classifiers for the whole trials. Overall

the general area is classified significantly more accurately

than the specific item within the area (paired t-test p <
0.001). This is quite unexpected, as the two classification

stages should be equally difficult. Both classifiers need to

solve a 4 class problem and both parts use two codebooks

segments of 15 bits each.

Figure 5 shows the individual accuracies of the data

segments. Note that the respective codebooks and thus the
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Fig. 5. Classification accuracy of the four distinct segments for all subjects
and the average. The gray line indicates chance level. The first and third
segment contain information about the general area, the second and fourth
about the specific item within the area.
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Fig. 6. Classification accuracy of the two stages separately for all subjects
and the average. The gray line indicates the chance level.

(stimulus) flickering patterns are identical for segment 1 and

3 and also for segment 2 and 4. In theory, the corresponding

segments should classify equally well. In practice, however,

this is not the case. Segment 1 classifies significantly better

than segment 3. The same is true for segments 2 and 4.

The reason for this degradation is not yet clear, but is likely

related to the structure of a trial (see Fig. 4). Each segment,

that is, the particular flickering pattern described by the

corresponding codebook, triggers a unique activation pattern

in the PVC. The exact time course of this activation is yet

unknown. As we use very short segments (ca. 250 ms),

the PVC activation pattern might not instantly switch from

one pattern to the other upon the start of a new segment.

There might be a smooth transition from one pattern to the

other in terms of neural activity. Such an effect would than

cause the signal of a consecutive segment to be a mixture

of the true activity corresponding to the current flickering

pattern and the activity corresponding to the previous pattern.

In other words, a segment would contain also information

on its predecessor. If so, a classifier trained on segment 2

data should be able to cope with segment 3 data, at least

to a certain degree (i.e., better than chance, > 25%). We

evaluated this hypothesis by training a classifier only on

segment 2 data and applying it to the data of segment 3.

The accuracy (66%) was considerably above chance, which

supports our hypothesis. On the other hand, segment 3

classifies generally better than segment 2, but should be

equally effected by the mixture problem. Likely, the latter

is not the only effect that is present in the data and not

a sufficient explanation for the worse performance of the

second classification stage. A deeper analysis taking the

neurophysiological properties of cVEP PVC activation into

account is needed to understand these phenomena.
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Fig. 7. Classification accuracy sorted by condition for all subjects and the
average. The gray line indicates chance level.

B. Green/Red Flickering

For comparing the two stimulus color conditions, Figure

7 shows the accuracies for the two different conditions per

subject. There is no large difference in classification accuracy

except for subject 3. This subject was very tired during

the second session, which was the black/white one. So,

in terms of classification accuracy, there is on average no

advantage for one condition over the other. There where

small differences for some subjects and it might be valuable

to evaluate this further. There might be subjects where one

condition is indeed preferable, but more trials are needed to

asses this in detail.

To determine the exhaustiveness of the two conditions for

the subjects we evaluated the questionnaires. The study was

quite exhausting and tiring for all subjects, mainly caused

by the flickering. The average questionnaire score was 3.75

points out of 6 possible points for “The experiment was

exhausting” and 4.13 out of 6 for “The experiment was

tiring”. There was no significant difference between the two

color conditions. For the evaluation of the skin conduction,

we compared the average measured GSR value during the

trials of the two sessions for each subject. The GSR sensor

data showed a reduction in skin conductance between 2%

and 30% for 8 subjects from the first to the second session.

One subject showed an increase of 2% and for one subject

the measurement was broken. No difference related to the

two conditions could be found.

IV. DISCUSSION AND CONCLUSION

The results of this study are three-fold. Firstly, we found

that the codebook vector can be chosen in a way that makes

it possible to very rapidly (250 ms) detect the general area

at which the subject gazes, without destroying the overall

classification. The classifier accuracy in detecting the general

area in this short time windows was 81%. As stated in

the introduction this rapid detection of the general area of

the target is very useful for control of semi-autonomous

devices like a BCI-controlled wheelchair. What is more, it

greatly increases flexibility in constructing the codebook.

There might be situations where it is useful to increase the

hamming distance of the codebook vector of a specific item

to all items in exchange for a decrease of the hamming

distances within the other items.

Still, the total classification accuracy is lower than in other

recent cVEP studies. We strongly suspect that this is mainly

due to the overlapping effect between the different segments

of the hierarchical codebook. Additionally, the questionnaire

showed that the subjects had to make an effort to keep

gazing at the targets without blinking. It is difficult to check

whether all subjects were motivated to do so. This might

be one reason for the high variance. Still, both session are

classified roughly equally well for nearly all subjects and no

degradation of accuracy within the sessions could be found.

This suggests that, although the exhaustiveness is a problem

for subjects’ motivation and an issue for practical use, it is

not a problem for the classification.

Secondly, we showed that a green/red flicker can be

detected as reliably as a black/white flicker in terms of clas-

sification accuracy. The questionnaires revealed that from the

subjects’ point of view both conditions are quite exhausting

and on average no condition is less exhausting than the

other. There were differences for single subjects, though.

These differences can be partly attributed to the order of

the sessions. In general, the second session is perceived to

be more exhausting. However, some subjects seem to prefer

one color condition over the other. It might be useful to test

for individual preferences before doing the study.

As the next step towards increased flexibility, we propose

to include a background image and optimize the hierarchical

codebook.
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