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Abstract— Closed-loop decoder adaptation (CLDA) is an
emerging paradigm for improving or maintaining the online
performance of brain-machine interfaces (BMIs). Here, we
present Likelihood Gradient Ascent (LGA), a novel CLDA
algorithm for a Kalman filter (KF) decoder that uses stochastic,
gradient-based corrections to update KF parameters during
closed-loop BMI operation. LGA’s gradient-based paradigm
presents a variety of potential advantages over other “batch”
CLDA methods, including the ability to update decoder param-
eters on any time-scale, even on every decoder iteration. Using
a closed-loop BMI simulator, we compare the LGA algorithm
to the Adaptive Kalman Filter (AKF), a partially gradient-
based CLDA algorithm that has been previously tested in non-
human primate experiments. In contrast to the AKF’s separate
mean-squared error objective functions, LGA’s update rules are
derived directly from a single log likelihood objective, making
it one step towards a potentially optimal continuously adaptive
CLDA algorithm for BMIs.

I. INTRODUCTION

Brain-Machine Interfaces (BMIs) aim to restore motor
function to those suffering from stroke, spinal cord injury,
amyotrophic lateral sclerosis, and other disabling conditions.
Researchers have exhibited compelling proof-of-concept
BMI demonstrations of rodents, monkeys, and humans using
neural activity to control both real and artificial actuators [1]–
[3]. However, significant improvements in both reliability
and performance are still needed to achieve clinically viable
neuroprostheses for humans [4].

Closed-loop decoder adaptation (CLDA) is one mech-
anism for achieving and/or maintaining high performance
BMI systems. CLDA algorithms aim to make the decoder’s
output accurately reflect the user’s intended movements by
adapting or updating the decoder’s parameters during closed-
loop BMI operation (i.e., while the subject is using the
BMI). A variety of CLDA algorithms have been developed
that operate on different types of BMI decoders, including
the population vector algorithm [1], the Wiener filter [5],
neural networks [6] and the Kalman filter [7]–[10]. Here we
focus our analysis on CLDA for the purpose of discovering
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high-performance decoder parameter settings without prior
knowledge of neural tuning properties.

One CLDA paradigm that has not yet been fully explored
is that of continuous adaptation. Previous work developed
a continuously adaptive, partially gradient-based CLDA al-
gorithm known as the Adaptive Kalman Filter (AKF) and
tested it in non-human primate experiments [10], [11]. Here,
we introduce Likelihood Gradient Ascent (LGA), a novel KF
CLDA algorithm whose gradient-based paradigm presents
potential advantages over other methods. Using a closed-
loop BMI simulator, we demonstrate that applying the LGA
algorithm leads to higher performance than the AKF in a 2-D
center-out cursor control task. In contrast to the AKF, LGA’s
update rules are derived directly from a single log likelihood
objective function rather than separate mean-squared error
objectives, making LGA a step towards a potentially optimal
continuously adaptive CLDA algorithm for BMIs.

II. THE LIKELIHOOD GRADIENT ASCENT (LGA)
ALGORITHM

Closed-loop decoder adaptation (CLDA) is an emerging
paradigm for improving or maintaining the online perfor-
mance of brain-machine interfaces (BMIs). Here, we propose
a new CLDA algorithm called Likelihood Gradient Ascent
(LGA) for adapting the parameters of a Kalman filter (KF)
decoder during closed-loop BMI operation. To be concrete,
we consider the example case of BMI cursor control, where
the KF state represents the position and velocity (in the
horizontal and vertical directions) of a computer cursor. It
should be noted, however, that the LGA algorithm and the
KF itself still apply more generally to any BMI prosthetic
device. First, we briefly review the Kalman filter model
and different methods for estimating the user’s intended
movements that could be used as part of LGA.

A. The Kalman filter
Let xn ∈ Rk and yn ∈ Rm represent a hidden state and

a noisy observation of that state, respectively, at iteration n.
In the BMI context, for example, xn represents the user’s
intended movements of a prosthetic device (e.g., position
and velocity of a computer cursor), while yn represents
features extracted from the user’s neural activity (e.g., binned
firing rates). The Kalman filter assumes the following state
transition and state observation models:

xn = Axn−1 + wn (1)
yn = Cxn + qn (2)
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where wn ∼ N (0,W ), qn ∼ N (0, Q), and {wn} and
{qn} are each independent and identically distributed over
time (and independent of each other). From these equations,
we note that the KF model is parametrized by the matrices
{A,W,C,Q}. Under these model assumptions, the Kalman
filter is a statistically optimal algorithm for estimating the
hidden state as it evolves over time when given only the noisy
observations of the state. Using knowledge of the underlying
model parameters {A,W,C,Q}, the Kalman filter imple-
ments an optimal linear, recursive algorithm for estimating
the unknown intended movement states {xn} from the neural
observations {yn}. We refer the reader to [12] for the actual
KF equations used to estimate the state xt at each filter
iteration.

B. Estimating intended movements

When using a KF decoder for BMI cursor control, the KF
outputs a sequence {x̂n} that represents the decoded cursor
kinematics over time. Unless the decoder’s parameters are
already optimized or the BMI user has already learned to
use the decoder for accurate cursor control, the user will
likely make movement errors when attempting to control the
cursor. For instance, if the user is attempting to type on a
virtual keyboard, the cursor may not always move towards
the letter that the user intends.

During a training or calibration phase, one could use
additional task knowledge (e.g., the sequence of letters that
the user intended to type) to generate an estimate of the
user’s intended cursor kinematics over time, which we will
denote as {x̃n}. For instance, one might utilize Shpigelman
et al.’s method, which would estimate intended cursor tra-
jectories using a time-varying linear combination of {x̂n}
and the known letter locations [13]. Alternatively, one could
use Gilja et al.’s method (“innovation 1” of the ReFIT-KF
algorithm), which assumes that the user always intends to
move the cursor in a straight line towards the next letter [7].
Gilja et al.’s method has previously been used to estimate
intended cursor kinematics as part of other CLDA algorithms
[7], [8]. Other methods of estimating the user’s intended
movements have also been developed, including Li et al.’s
unsupervised method of performing Kalman smoothing to
“correct” previously decoded outputs [9].

Given an estimate {x̃n} of the user’s intended cursor kine-
matics and simultaneously recorded neural features {yn},
one can feed this data into a CLDA algorithm (such as LGA).
The CLDA algorithm can then update the KF decoder’s
parameters during closed-loop BMI operation, with the goal
of making the decoder’s future outputs more accurately
reflect the user’s intended movements.

C. The LGA algorithm

Here, we introduce Likelihood Gradient Ascent (LGA),
a new gradient-based CLDA algorithm for a KF decoder.
Let θ(i) =

{
A(i),W (i), C(i), Q(i)

}
represent the current

KF decoder parameters. The LGA algorithm first collects
a batch of N consecutive pairs of (x̃n, yn), where x̃n and
yn are intended cursor kinematics and neural observations

(respectively), and N ≥ 1 is a free algorithmic parameter
which we denote as the “batch size”. Let D represent the
collection of these N pairs of data. The log likelihood of a set
of parameters θ given D — l (θ;D) — is defined as the log
probability of observing the data D, under the assumption
that this data originated from a model parametrized by θ.
In order to update the current KF parameter setting θ(i),
the LGA algorithm calculates the gradients of l (θ;D) with
respect to each of {A,W,C,Q}, evaluates these gradients
at the current parameter values

{
A(i),W (i), C(i), Q(i)

}
, and

then updates these parameter values using one step of gra-
dient ascent. For example, C is updated by the rule

C(i+1) = C(i) + µC

(
∇C l

(
θ(i);D

))
, (3)

where µC is a step-size parameter. The update rules for
A, W , and Q are analogous. The updated parameter values
are then used in the KF decoder for subsequent closed-loop
control, and LGA begins collecting the next N pairs of data.
Note that it is not necessary to adapt all four KF matrices.
For instance, in our simulations we chose to only adapt the
KF observation model parameters (C and Q), and kept the
state transition model parameters (A and W ) fixed over time,
consistent with prior experimental demonstrations involving
CLDA [8], [9], [14].

To derive the actual update rules of the LGA algorithm,
we first write the log likelihood as:

l (θ;D) = log p (D|θ)

= log

[(
N∏

n=2

p (x̃n|x̃n−1)

)
·

(
N∏

n=1

p (yn|x̃n)

)]

=

N∑
n=2

log p (x̃n|x̃n−1) +

N∑
n=1

log p (yn|x̃n)

= constant− N − 1

2
log |W | − N

2
log |Q|

−1

2

N∑
n=2

(x̃n −Ax̃n−1)
T
W−1 (x̃n −Ax̃n−1)

−1

2

N∑
n=1

(yn − Cx̃n)T Q−1 (yn − Cx̃n) (4)

where we used the fact that xn|xn−1 ∼ N (Axn−1,W ) and
yn|xn ∼ N (Cxn, Q). We can then calculate the gradients
of the log likelihood with respect to each of the parameters
{A,W,C,Q} as:

∇Al (θ;D) =W−1
(
X̃2 −AX̃1

)
X̃T

1

∇W l (θ;D) = −N − 1

2
W−1

+
1

2
W−1

(
X̃2 −AX̃1

)(
X̃2 −AX̃1

)T
W−1

∇C l (θ;D) = Q−1
(
Y − CX̃

)
X̃T

∇Ql (θ;D) = −
N

2
Q−1

+
1

2
Q−1

(
Y − CX̃

)(
Y − CX̃

)T
Q−1
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where we have expressed the gradients compactly by defining
matrices X̃ and Y whose columns are composed of {x̃n}Nn=1

and {yn}Nn=1, respectively. These gradients are then evalu-
ated at the current KF parameter setting θ(i), and used to
determine the next parameter setting θ(i+1). For comparison,
note that the update rule for C performed by the AKF CLDA
algorithm [10], which performs gradient descent based on a
different objective function, can be written as:

C(i+1) = C(i) + µC

(
yt − C(i)x̃t

)
x̃Tt ,

For LGA, an alternate (and simpler) set of updates rules
for W and Q can be obtained by calculating the gradients
of the log likelihood with respect to W−1 and Q−1:

∇W−1 l (θ;D) = N − 1

2
W − 1

2

(
X̃2 −AX̃1

)(
X̃2 −AX̃1

)T
∇Q−1 l (θ;D) = N

2
Q− 1

2

(
Y − CX̃

)(
Y − CX̃

)T
One can then instead update

(
W−1

)(i)
and

(
Q−1

)(i)
directly,

using a rule similar to Eq. (3).

III. RESULTS

We compared the performance of the LGA algorithm to
the AKF in a 2-D center-out cursor control task using a
closed-loop BMI simulator. This method of simulating neural
spiking activity was used previously in a BMI simulation
in which human subjects generated the intended velocity
with natural arm movements [15]. In our simulation, at each
time step, the simulated subject observed the current position
of the cursor and calculated a velocity that would direct it
towards the target. A noisy version of this velocity direction
was then used to generate spike counts from m = 20
simulated neurons. The spike rate λi(n) of neuron i at time
step n was given by:

λi(n) = max
(
0, 〈PDi, v

sub
n 〉+ bi

)
where bi and PDi are the baseline firing rate and preferred
direction vector of neuron i, and vsubn is the noise-corrupted
velocity direction generated by the subject. Baseline firing
rates were chosen between 5–10 Hz, and preferred directions
were randomly sampled from the distribution:

∠PDi ∼ Uniform[0, 2π), ‖PDi‖ =
14 spikes/sec
20 cm/sec

,

Binned spike counts were then sampled from a Poisson
distribution:

yn,i ∼ Poisson (λi(n) · dt)

and fed into a KF decoder (dt was set to be 100 ms). A and
W were set to obey physical kinematics, such that integrating
the velocity from one KF iteration perfectly explains position
at the next iteration [7]. Elements of C were initialized by
sampling from a standard normal distribution and Q was
initialized to Q = 10 · Im. Then, either the LGA or AKF
CLDA algorithm was used to adapt C and Q while the
simulated subject performed a center-out task. CLDA was
performed only during the first 8 trials, after which decoder
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Fig. 1. Simulated closed-loop performance of the AKF and LGA CLDA
algorithms when all neuronal baseline firing rates were equal (10 Hz). LGA
generated decoder parameters resulting in less movement variability than
AKF (p < 0.05, Kruskal-Wallis test) but the difference in movement error
was insignificant in this simulation condition.

parameters were held fixed for the rest of the simulation. To
evaluate performance, we used 2 metrics that have previously
been used to measure the accuracy of cursor trajectories:
1) Movement Error (ME; average deviation perpendicular
to the reach direction), and 2) Movement Variability (MV;
standard deviation of movement errors perpendicular to the
reach direction) [8], [16].

Figure 1 shows the subject’s closed-loop performance dur-
ing 100 simulated sessions in which baseline firing rates were
set to 10 Hz for all simulated neurons. Cursor trajectories
showed less movement variability (p < 0.05, Kruskal-Wallis
test) when the LGA algorithm was used to perform CLDA
instead of the AKF algorithm. The difference in movement
error was insignificant (p > 0.05, Kruskal-Wallis test).

Closer inspection of both CLDA algorithms’ updates rules
for C reveals that LGA’s update rule contains an “extra”
Q−1 term. This difference suggests that LGA potentially has
greater advantages over the AKF when the noise variances
of neurons, which are modeled by Q, may vary across the
BMI neural population. To test this hypothesis, we simulated
the more realistic condition where modulation depths and
baseline firing rates of the simulated neurons varied (evenly
distributed between 5 and 10 Hz). In 100 simulated task
sessions, cursor trajectories showed 10% less movement
error (p = 0.03, Kruskal-Wallis test) and 13% less movement
variability (p = 0.0001, Kruskal-Wallis test) when the LGA
algorithm was used to perform CLDA instead of the AKF
(Figure 2). These differences suggest that LGA’s advantages
over the AKF algorithm are more pronounced when the
neural ensemble being used for control has a wide dynamic
range of firing rate statistics.

IV. DISCUSSION

The LGA algorithm is a fully gradient-based CLDA algo-
rithm for a Kalman filter decoder. Previous work developed
and tested a partially gradient-based CLDA algorithm known
as the Adaptive Kalman Filter (AKF). Although the AKF’s
update rules for the A and C matrices are gradient-based, its
update rules for the W and Q covariance matrices are instead
of heuristic form. Moreover, the AKF’s update rules for A
and C are based on separate mean-squared error objective
functions. In contrast, all of LGA’s update rules are gradient-
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Fig. 2. Simulated closed-loop performance of the AKF and LGA CLDA
algorithms for the more realistic conditions when baseline firing rates differ
between neurons (chosen between 5 and 10 Hz). The smaller movement
error and movement variability of decoders trained using LGA versus AKF
is statistically significant (p < 0.05, Kruskal-Wallis test).

based and are derived directly from a single, unified log like-
lihood objective function. Since the KF assumes probabilistic
state transition and observation models, a gradient-based KF
CLDA algorithm should ideally be based on an objective
function that accurately captures the models’ probabilistic
nature. With respect to this goal, the AKF’s mean-squared
error objective functions are not ideal because they do not
have a probabilistic interpretation. On the other hand, the log
likelihood function has a clear probabilistic interpretation as
the (log) probability of observed data under a given set of
parameters, and therefore in this sense, the LGA algorithm’s
choice of a log likelihood objective is optimal. For instance,
unlike the more heuristic AKF method, LGA automatically
rescales updates to neural tuning parameters based on the
noise covariance of the neural population.

The LGA algorithm’s gradient-based paradigm presents
many potential advantages in the context of CLDA. For
instance, LGA’s update rules aim to “correct” rather than
completely overwrite the current KF parameter setting, and
the resulting smoothness in parameter updates can potentially
make the algorithm robust to sporadic periods of unreliable
data (e.g., when an animal subject briefly stops attending to
the BMI task). Additionally, by choosing appropriate step-
size values, the algorithm can be customized to achieve any
desired level of smoothness or aggressiveness in parameter
updates. Fine-grained control over CLDA with a single pa-
rameter may be important in settings where the experimenter
must manage the rate of CLDA in real-time to maximize
perfomance. Furthermore, by setting an appropriate value of
the batch size N , the LGA algorithm can be applied to adapt
a KF decoder on any time-scale.

The LGA algorithm operates within the CLDA paradigm
of using an estimate of the user’s intended movements to
update the decoder. Depending on the particular method
used for calculating this estimate, LGA could potentially
be applied in multiple different settings. For instance, LGA
could use Gilja et al.’s supervised method (“innovation 1”
of the ReFIT-KF) [7] as part of a dedicated training session
(i.e., initial decoder training or periodic recalibration). Al-
ternatively, LGA could use Li et al.’s unsupervised method
(Kalman smoothing of previously decoded outputs) [9] to
update decoder parameters during everyday BMI operation.

One common shortcoming of both LGA and AKF is due
to the stochastic nature of the gradient updates, as single
time-point estimates of the gradient can be quite noisy and
inaccurate. Although larger batches can be used in both
algorithms, the smoothness benefits of using larger batches
are not well characterized. In future work, we will explore
alternative ways in which accurate updates may be generated
while still adapting KF parameters on every iteration.
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