


Abstract—A  plethora  of  data  is  accumulating  from  high 
throughput methods on metabolites,  coenzymes, proteins,  and 
nucleic acids and their interactions as well as the signalling and 
regulatory functions and pathways of the cellular network. The 
frozen moment viewed in a single discrete time sample requires 
frequent repetition and updating before any appreciation of the 
dynamics of component interaction becomes possible. Even then 
in a sample derived from a cell population, time-averaging of 
processes and events that occur in out-of-phase individuals blur 
the  detailed  complexity  of  single  cell  organization. 
Continuously-grown  cultures  of  yeast  can  become 
spontaneously self-synchronized, thereby enabling resolution of 
far  more  detailed  temporal  structure.  Continuous  on-line 
monitoring  by  rapidly  responding  sensors  (O2 electrode  and 
membrane-inlet mass spectrometry for O2, CO2 and H2S; direct 
fluorimetry  for  NAD(P)H  and  flavins)  gives  dynamic 
information from time-scales of minutes to hours. Supplemented 
with  capillary  electophoresis  and  gas  chromatography  mass 
spectrometry and transcriptomics the predominantly oscillatory 
behaviour of network components becomes evident, with a 40 
min cycle between a phase of increased respiration (oxidative 
phase)  and  decreased  respiration  (reductive  phase).  Highly 
pervasive, this ultradian clock provides a coordinating function 
that  links  mitochondrial  energetics  and  redox  balance  to 
transcriptional  regulation,  mitochondrial  structure  and 
organelle remodelling, DNA duplication and cell division events. 
Ultimately, this leads to a global partitioning of anabolism and 
catabolism and the enzymes involved, mediated by a relatively 
simple ATP feedback loop on chromatin architecture.

I. ONLINE MEASUREMENTS

It  has  been  known  for  almost  60  years  that 
continuously-grown high-cell density budding yeast cultures 
tend  to  auto-synchronise  their  behaviour  resulting  in  an 
oscillation  in  respiratory  activity(Finn  &  Wilson,  1954; 
Satroutdinov,  Kuriyama,  &  Kobayashi,  1992;  von 
Meyenburg,  1968),  which  is  most  easily  accessible  by 
measuring the residual dissolved oxygen of the culture and 
can be maintained for months (Fig. 1). This dynamic state has 
periods ranging from 40 minutes to several hours and occurs 
despite  temperature,  pressure,  pH,  media  flow  rate  and 
reaction  volume  remaining  constant  during  the 
culture(Murray, Beckmann, & Kitano, 2007). This challenges 
the paradigm that continuous cultures will reach a chemically 
static  (chemostat)  state  when  grown  under  continuous 
constant conditions, where one substrate (for example carbon, 
nitrogen or phosphate) becomes limiting(Monod, 1950). Each 
cycle  comprises  phases  of  high  (oxidative)  and  low 
(reductive) respiratory activity. The oxidative and reductive 
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phases can be empirically defined by oxygen consumption 
rates(Fig.  1a).  Moreover,  relative  NAD(P)H  concentration 
(Fig. 1b) and flavin oxidation state (Fig. 1c) indicate a more 
reducing  environment  during  the  reductive  phase.  Carbon 
dioxide  production  rates  (Fig.  1d),  hydrogen  sulphide 

production rates (Fig. 1e) and heat transfer rates (Fig. 1f) are 
all  used  to  precisely  define  the  physiological  state  of  the 
culture at any given phase of the oscillation.

II.OMIC APPROACHES

Beyond continuous measurements, respiratory oscillations 
have  also  been  frequently  sampled  for  the  analysis  of 
biological  function,  transcript  abundance(Klevecz,  Bolen, 
Forrest,  &  Murray,  2004;  Li  &  Klevecz,  2006;  Nikolai 
Slavov  &  Botstein,  2011;  Tu,  Kudlicki,  Rowicka,  & 
McKnight,  2005) and  metabolite  concentrations(Hans, 
Heinzle, & Wittmann, 2003; Murray et al., 2007; Sasidharan, 
Soga, Tomita, & Murray, 2012; Nikolai Slavov & Botstein, 

Cornelia Amariei, Rainer Machné, Kalesh Sasidharan, Willi Gottstein, Masaru Tomita, Tomoyoshi 
Soga, David Lloyd and Douglas B. Murray

The Dynamics of Cellular Energetics during Continuous yeast Culture.

Figure 1. Continuous  online  measurements  during  the  respiratory 
oscillation of Saccharomyces cerevisiae. The dry biomass was 8.1 g/L and 
the cell doubling time was 8.13 h. The thin dotted represents the residual 
dissolved  oxygen  concentration  (measured  by  an  electrode).  Oxygen 
uptake rates were calculated from an off-gas sensor array (qO2; a)(Murray 
et al.,  2007).  NAD(P)H (b) and flavin oxidation state was measured by 
in-situ flurorimetry(Murray, Engelen, Lloyd, & Kuriyama, 1999). Carbon 
dioxide  excretion  rates  (qCO2;  d),  Hydrogen  sulphide  production  rates 
(qH2S;  e)  and  heat  transfer  (f)  were  all  calculated  as  previously 
described(Murray  et  al.,  2007).  The  vertical  gray  lines  represnt  the 
transition between redox states (Ox- oxidative, Red – Reductive). Adapted 
from Murray, Haynes, & Tomita, 2011.
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2011; Tu et al., 2007). These studies lead to the startling 
conclusion  that  the  vast  majority  of  cellular  physiology 
oscillates  with  specific  phase  relationships  to  respiratory 
state.  Further  computational  analyses comparing oscillation 
periods of 40 and 300 min have highlighted two super-groups 
of  transcripts  that  translate  into anabolic  (oxidative  phase) 
and catabolic (reductive phase) processes(Machné & Murray, 
2012).  The  metabolic  outputs  from  these  superclusters 
generally appeared antiphase to the transcript abundances. 

Moreover,  in  both  oscillation  periods  DNA replication 
was gated at a specific phase, leading to the hypothesis that 
the  major  function  of  the  oscillator  was to  separate  DNA 
synthesis  from  respiratory  activity  (measured  by  oxygen 
uptake rates), i.e., the reactive oxygen species (ROS) – DNA 
synthesis  temporal  partitioning  hypothesis(Klevecz  et  al., 
2004;  Tu et  al.,  2005).  This  was the case  for  the  40  min 
oscillation (Fig.  2)  as S-phase occurs when oxygen uptake 
rates  are  lower.  However,  when  the  maximum  DNA 
replication phase was plotted for the 300 min oscillation it 
occurred  during  the  peak  of  oxygen  consumption.  The 
confusion on what defines the reductive and oxidative phases 
may  have  lent  support  to  the  ROS-DNA  synthesis 
hypothesis(Murray,  2006).  It  is  therefore  critical  to  define 
these phases according to measured oxygen uptake rates(N. 
Slavov, Macinskas, Caudy, & Botstein, 2011). It is interesting 
to  note  in  Fig.  2  that  the  slope  during  the  300  minute 
oscillation  of  the  “Biosynthetic  or  anabolic  Program” 
(Murray et  al.,  2007) is  0.46,  this may arise from the 2% 
glucose used in the 40 minute case and the 1% glucose in the 
300 minute case.  Additionally, S-phase appears to occur at 
the same point during this “program”. Further evidence that 
supports a different scenario was provided by the observation 
that no measurable S-phase occurred during the respiratory 
oscillation at the end of batch growth (N. Slavov et al., 2011). 
It  is  apparent  that  DNA synthesis  occurs  during the  same 
phase of the “biosynthetic program” (Fig. 2). Overall, these 
results suggest the cell division cycle is only coupled weakly 
with  the  respiratory  oscillation  and  that  the  energy  input 
(from glucose) can determine the phase relationships between 
the cell division cycle and the “biosynthetic program". 

III. CELLULAR ENERGETICS

Therefore,  we  tested  ATP  availability  during  the 
oscillation (Fig. 3), by calculating the ATP:ADP ratios. We 
observed  an  oscillation  between 1-1.2  (reductive)  to  4-5.5 
(oxidative)  each  cycle  (Fig.  3).  The  maximum  ATP 
availability  was  observed  during  the  oxidative  phase,  i.e., 

coinciding with maximum respiratory chain activity. In Fig. 2 
the  data  already  clusters  into  distinct  groups,  we  further 
investigated  this  using  a  multidimensional  model  based 
clustering  approach  adapted  from  flow  cytometric 
analysis(Lo, Hahne, Brinkman, & Gottardo, 2009). Initially, 
we could identify two superclusters (oxidative and reductive), 

that could further be clustered into five fine-grain  clusters (A, 
AB  and  B  in  the  oxidative  phase,  and  C,  and  D  in  the 
reductive phase) that encompass ~34 % of the yeast genome 
(Machné & Murray, 2012). These clusters were then analysed 
for  ontology enrichment  to  reveal  a  series  of  events  from 
ribosomal  assembly  in  cluster  A  and  AB,  anabolic 
metabolism in cluster  AB and B,  mitochondrial  ribosomal 
assembly  in  cluster  C  and  then  catabolic  metabolism and 
stress  response in cluster  D. We statistically compared  the 
clusters to a compendia of high-throughput datasets that exist 
for  yeast.  In  Figure  4,  for  example,   we see  that  from a 
collection  of  1327  microarray  hybridisations(McCord, 
Berger,  Philippakis,  &  Bulyk,  2007) performed  in  many 
independent  experiments  that  encompass  knockout,  time 
series  perturbations  we  can  reveal  that  these  experiments 
generally showed oxidative or reductive phase responses. The 
ATP data and the cross-correlation between these expression 

Figure 2. A phase-phase plot of two oscillation periods. The left and lower insets indicate the residual dissolved oxygen concentration in the culture for 
the 40 min  (Li & Klevecz, 2006) and 300 min  (Tu et al., 2005) oscillation, respectively. The residual dissolved oxygen for the 40 min cycle was from 
direct measurements and the 300 min oscillation cycle values were derived from digitized from the original paper(Tu et al., 2005). The blue area represents 
the reductive phase and the red area represents the oxidative phase, calculated from the minimum and maximum of the first derivative of the residual  
dissolved oxygen. S represents when S-phase is at a maximum during both periods. The heatmap behind shows the when transcript abundance for the 5200  
yeast genes peak. This simple analysis already shows common clusters in the dataset (for a more comprehensive cluster analysis see (Machné & Murray, 
2012)).  The magenta line represents a biosynthetic or catabolic program common to both periods in time and the cyan line represents phase coherent  
clusters, i.e., have similar phase angles in both datasets.

Figure 3. ATP/ADP ratios (■) during the respiratory oscillation. ATP and 
ADP  were  measured  by  anionic  capillary  electrophoresis  mass 
spectrometry(Sasidharan et al.,  2012;  Soga et al.,  2009).  The continuous 
black line represents residual dissolved oxygen concentration.
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clusters, when taken together, imply a general regulatory 
mechanism  which  underlies  such  global  and  pervasive 
expression dynamics.  Correlation between  ATP/ADP ratios 
and  mitochondrial  state  3  respiratory  rates  (Chance  & 
Williams,  1955) has  been  experimentally  demonstrated  in 
vivo in  synchronous  cultures(Lloyd,  Poole,  &  Edwards, 

1982), and this phenomenon of intracellular respiratory 
control  correlated  with the cycles  of  respiratory oscillation 

confirmed in yeast(Lloyd, Salgado, Turner, Suller, & Murray, 
2002).

We  hypothesised  that  this  mechanism  must  involve  a 
fundamental signature in promoter architecture of the target 
genes.  Therefore,  we  cross-correlated  nucleosome 
configurations with the expression clusters genes(Lee et al., 
2007;  Machné  &  Murray,  2012) (Fig.  5).  Nucleosome 
architecture showed distinctive patterns for each of the cluster 
genes.  Cluster  A and C genes show coherent nucleosomes 
with a large nucleosome free region. Cluster AB genes were 
depleted up stream and these genes, encoding for ribosomal 
proteins,  were  the  most  highly  expressed  genes  in  yeast. 
Cluster  D genes did not have clearly defined nucleosomes 
upstream of the transcriptional start site. This configuration is 
termed as fuzzy(Lee et al., 2007).

These  data  point  to  a  sequential  activation  of  gene 
expression during the respiratory oscillation that is coupled to 
cellular  energy  state.  Chromatin  remodelling  in  yeast  is 
mediated by at least two complexes, RSC which is involved 
in  maintaining   nucleosome-free  promoters  for  efficient 
transcription(Fischer,  Saha,  & Cairns,  2007) and the ISWI 
complex  Isw2  which  shifts  nucleosomes  over  promoter 
regions to inhibit transcription(Whitehouse, Rando, Delrow, 
& Tsukiyama, 2007) and appears to influence genes in cluster 
D mainly(Machné & Murray, 2012) .  The activity of both 
these complexes are ATP dependent therefore we propose a 
dual negative feedback loop that shapes gene expression to 
the energetic landscape (Fig. 6). This involves ATP activation 
of the RSC complex resulting in the expression of genes with 
well defined or depleted nuclesome free regions (cluster A, 
AB  and  C)  while  simultaneously  ATP  represses  the 
expression of cluster D genes.  Decreased intracellular ATP 
results in reversal of all these processes.

Recently, the respiratory oscillation has been correlated 
with the  growth and  the  general  stress  responses  of  yeast 
(Machné & Murray, 2012; Nikolai Slavov & Botstein, 2011). 
Our current simple model has the potential to describe both of 
these  phenomena  under  the  umbrella  of  global  ATP 
availability  and  chromatin  remodelling,  and  would  require 
only minimal regulation framework to switch cellular state, 
i.e., cells would express growth or stress expression profiles 
based on cellular energetics and its feedback on the chromatin 
remodelling complexes.
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