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Abstract— The cellular and intracellular dynamics are in-
trinsically stochastic and dynamic. However, whole biological
system such as a cell or our body can function very robustly
and stably even though they are composed of these stochastic
reactions. To account for this riddling relation between macro-
scopic robustness and microscopic stochasticity, I propose a
mechanism that information relevant for stable and reliable
operation of a biological system is embedded in apparently
stochastic and noisy behavior of their components. To show
validity of this possibility, I demonstrates that information
can actually be decoded from apparently noisy signal when
it is processed by an appropriate dynamics derived by Bayes’
rule. Next, I investigate biological relevance of this possibility
by showing that several intracellular networks can implement
this decoding dynamics. Finally, by focusing its dynamical
properties, I show the mechanism how the derived dynamics
can separate information and noise.

I. INFORMATION PROCESSING IN BIOLOGICAL SYSTEMS

Innovation of bio-imaging technology revealed that cellu-
lar and intracellular dynamics are intrinsically stochastic and
dynamic for various sub-processes such as signal transduc-
tion, cellular decision-making and gene expression [1]–[3].
This new experimental evidence apparently contradicts with
our naive observations that whole biological system such as
a cell or our body can function very robustly and stably even
though they are composed of these stochastic reactions [4].
This fact sounds riddling from the engineering viewpoint in
which stability of a system strongly depends on the stability
and reliability of its building components, suggesting that
there is unknown design principle in biological systems that
leads to construction of stable systems out of unreliable
components [5].

One possibility is to exploit stochasticity and noise.
Stochastic resonance is a typical example of such noise-
enhancement of biological functions, and has been inves-
tigate for several decades [6], [7]. However, stochastic res-
onance does not always explain stability and reliability of
biological functions. In addition, the situation under which
noise or stochasticity can be beneficial is limited mathemati-
cally except when cells need to use stochasticity to generate
diversity in order to attenuate effect of environmental uncer-
tainty [8].

Another possibility is that information relevant for stable
and reliable operation of a biological system is embedded
in apparently stochastic and noisy behavior of their com-
ponents. Stability and reliability of a whole system may
be realized if this information is exploited effectively by
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intracellular dynamics. This possibility has not yet been fully
pursued despite its importance.

In this article, I address this problem by employing theory
for Bayesian information processing as I did in [9]–[11].
Using this theory, I firstly derive a statistically optimal dy-
namics called here as information decoding dynamics for ex-
traction of information from noisy signal. This demonstrates
that information can actually be decoded from apparently
noisy signal. Next, I investigate biological relevance of this
possibility by showing that several intracellular networks can
implement this decoding dynamics [9]–[11]. Finally, I also
show the underlying mechanism how the derived dynamics
can separate information and noise by focusing its dynamical
properties. The extension of this approach is also discussed.

II. MODELING BINARY CELLULAR DECISION-MAKING

Binary decision-making is the simplest information pro-
cessing in biological systems. In this process, a cell has
to decide whether environment, x(t), is in one state or the
other, which are designated here with on and off. In general,
the state of the environment changes over time stochas-
tically. Thus, the sensing of environment is indispensable
to appropriately respond to the current environmental state.
Sensing by receptors is a major way to obtain information
on x(t). However, the sensing output y(t) may not always
provide accurate information on x(t). One source to prevent
accurate information transfer by y(t) is low signal intensity of
y(t). For example, several environmental molecules exist at
very low concentration. When the state of x(t) is associated
with the change in such molecule, x(t)-dependent change in
y(t) can be very subtle and hard to be identified. Another
source is the stochasticity of receptor activation, which is
induced either by random arrival of ligand related to x(t)
or by thermal fluctuation of receptor itself. Even when the
signal intensity of y(t) is large, information on x(t) becomes
ambiguous if fluctuation in y(t) due to stochasticity is much
larger than the signal intensity.

To account for the first one, I introduce two parameters,
λon and λoff, that designates the average frequency of recep-
tor activation when x(t) = on and x(t) = off, respectively.
I define λ (t) as λ (t) := λx(t). The second source can be
modeled by assuming that receptor activation occurs by
following Poisson point process in which a receptor gets
active n times during [s, t] with the probability PP(n;Λt

s) :=
(Λt

s)
ne−Λt

s/n! where Λt
s :=

∫ t
s λ (t ′)dt ′. Let define Ci(t) as

the total number of activation of i-th receptor, and assume
that a cell has total N0 receptors. In addition, as in [9],
the receptor is assumed to be get inactive after τ > 0.
Then N(t) := ∑N0

i=1 [Ci(t)−Ci(t − τ)] represents the number
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of active receptors at t. By normalizing N(t), I define
y(t) as y(t) := N(t)/(N0τ). In order to model stochastically
changing environment, I also use two-state Markov model
for the stochastic evolution of x(t), i.e., x(t) changes from
off(on) to on(off) with the probability ronΔt(roffΔt) within
small interval Δt > 0. When λon−λoff � (λon+λoff)/2, then
N(t) behaves very stochastically as if it does not reflect state
of x(t) as illustrated in Fig. 1 [9].

If we consider that there are different types of receptors
that behave differently, then other sensing process such
as gradient sensing can be modeled as an extension [10].
In gradient sensing, a cell obtains information of gradient
direction in environment by using multiple receptors located
spatially different positions on a cell [12]. Let yR(t) and
yL(t) be the output of receptors on right and left membrane
that follows Poisson point processes with intensity parameter,
λ R(t) and λ L(t), respectively. When x(t) = on corresponds
to the situation that gradient is pointing to right, then
λ R(t) = λon and λ L(t) = λoff for x(t) = on. When x(t) = off
corresponds to the situation that gradient is pointing to left,
then λ R(t) = λoff and λ L(t) = λon for x(t) = off. Because of
smallness of a cell, however, the difference of receptor signal
at different positions, λon−λoff, can be very small compared
with the average absolute intensity, (λon+λoff)/2. Under this
situation, yR(t) and yL(t) or corresponding NR(t) and NL(t)
behave as in Fig. 2 where NR(t) and NL(t) are defined as
N(t) is.
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Fig. 1. Sample paths of binary cellular decision-making. (A):x(t), (B):N(t),
and (C):z(t). Green background indicates that x(t) = on.

III. EXTRACTION OF INFORMATION BY BAYESIAN
DECODING DYNAMICS

As shown in Figs. 1 and 2, y(t) or yR(t) and yL(t) are
apparently very noisy as if they do not convey information
on x(t). However, information on x(t) is contained in these
noisy signals, and that information can be extracted when
y(t) are processed subsequently by appropriate dynamics. To
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Fig. 2. Sample paths of gradient direction sensing. (A): x(t), (B): NR(t),
NL(t), and (C):z(t). Green background indicates that x(t) = on, meaning
that gradient is pointing to right. Red and Blue curves are NR(t) and NL(t),
respectively.

derive such dynamics, I here use Bayes’ rule. Let z(t) (z̃(t))
be the posterior probability that x(t) = on (x(t) = off) given
the history of y(t) as z(t) := P(t,x = on|Y (t)) and z̃(t) :=
P(t,x = off|Y (t)) where Y (t) := {y(t ′) : t ′ ∈ [0, t]}. Then for
small Δt > 0, we can have

P(t ′,x′|Y (t ′)) ∝ P
+
Δt(Δy|x)∑

x
PΔt(x|x′)P(t,x|Y (t)), (1)

where PΔt(x′|x) is the probability that environment changes
from x to x′ within the time interval Δt. Because x(t) follows
two-state Markov process, PΔt(x′|x) = rx′Δt when x′ �= x
and PΔt(x′|x) = 1− rxΔt when x′ = x. In contrast, P+

Δt(Δy|x)
represents stochastic activations of receptors. Because each
receptor activation is modeled by Poisson point process
whose intensity is λ (t), P

+
Δt(Δy|x) = PP(Δy;λxΔt) for suf-

ficiently small Δt. By using these relation and taking the
limit Δt → 0 for sufficiently small τ > 0, we obtain

dz(t)
dt

= z(t)z̃(t)λr
τ [N(t)− τλmN0]+ ronz̃(t)− roffz(t),

= z(t)z̃(t)λrN0 [y(t)−λm]+ ronz̃(t)− roffz(t), (2)

where λr := logλon/λoff, λd := λon −λoff, and λm := λd/λr
[9]. In addition, z(t)+ z̃(t) = 1 holds. It should be noted that
this equation is an approximation of Bayesian update of the
posterior probability for finite τ [10].

This equation is driven only by noisy y(t). Nonetheless,
it can reconstruct behavior of x(t) with high fidelity as
demonstrated in Fig. 1. This result clearly indicates that
information can be extracted even from apparently noisy
signal when the noisy signal is processed appropriately.

When a cell receive input from multiple receptors yR(t)
and yL(t) to know the state of environmental gradient, similar
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equation can be obtained as

dz(t)
dt

= z(t)z̃(t)λr
τ [NR(t)−NL(t)]+ ronz̃(t)− roffz(t),

= z(t)z̃(t)λrN0 [yR(t)− yL(t)]+ ronz̃(t)− roffz(t). (3)

Fig. 2 illustrates that this equation also extracts the state of
gradient direction from noisy yR(t) and yL(t) even when their
difference is extremely small.

Since the process to reconstruct original x(t) from noisy
signal y(t) as z(t) is equivalent to the information decoding in
Shannon’s communication theory, the dynamics derived here
is called as information decoding dynamics in this article
[13].

IV. BIOCHEMICAL IMPLEMENTATION OF BAYESIAN
INFORMATION DECODING

While information decoding dynamics can extract infor-
mation on x(t) from noisy y(t), this does not mean that
cellular systems can do the same thing. Because of physical
properties of intracellular dynamics, only subset of dynamics
can be implemented biochemically. Next question, therefore,
is whether the information decoding dynamics can be imple-
mented biochemically or not. To demonstrate that (2) and (3)
are actually implementable biochemically, I first rearrange
(2) as

dz(t)
dt

=

[
λr

τ
N(t)z(t)+ ron

]
z̃(t)−

[
λr

τ
λmN0z̃(t)+ roff

]
z(t).

If we consider z(t) and z̃(t) as the ratio of phosphory-
lated and unphosphorylated intracellular protein, then Ron =[

λr
τ N(t)z(t)+ ron

]
and Roff =

[
λr
τ λmN0z̃(t)+ roff

]
can be

regarded as rate constants for phosphorylation and de-
phosphorylation, respectively. In addition, because these
rates depend on the ratio of phosphorylated and unphospho-
rylated proteins, z(t) and z̃(t), these reactions can be bio-
chemically realized by a positively auto-regulative reaction
such as an auto-catalytic reaction. Therefore, (2) is shown to
be biochemically implementable in principle, for example,
by an auto-catalytic phosphorylation and de-phosphorylation
cycle in which the noisy receptor signal y(t) works to
accelerate phosphorylation reaction [9].

Similarly, (3) can also be implementable by the following
polarity formation reaction [11]:

dBR

dt
= BC [νBRNR(t)+ ka]− kdBR,

dBL

dt
= BC [νBLNL(t)+ ka]− kdBL,

dBC

dt
= −BC [νBRNR(t)+BLNL(t)+2ka]+ kd(BR +BL).

Here, BR and BL are the amounts of polarity protein localized
on right and left membrane, respectively. In contrast, BC
is the amount of that protein in cytoplasm. As equations
indicate, the localization to right (left) membrane is en-
hanced by the receptor activity on right (left) membrane
NR(t)(NL(t)). In addition, this process is positively regulated
by already localized protein. Let define z(t) and z̃(t) as

z(t) :=BR(t)/BM(t) and z̃(t) :=BL(t)/BM(t) where BM(t) :=
(BR(t)+BL(t)). Then, we can obtain equations for z(t) and
z̃(t) as

dz
dt

= z(t)z̃(t)(νBC) [NR(t)−NL(t)]+
kaBC

BM
(z̃(t)− z(t)),

dz̃
dt

= z(t)z̃(t)(νBC) [NL(t)−NR(t)]+
kaBC

BM
(z(t)− z̃(t)).

For |λR(t)−λL(t)| � (λR(t)+λL(t))/2, BC and BM can be
regarded approximately constant as shown in [11]. Thus,
by identifying νBC = λr/τ and ron = roff = kaBC/BM , the
equation for z(t) derived here becomes identical to (3),
meaning that (3) is biochemically implementable.

These examples illustrate that information decoding dy-
namics are biochemically implementable and there are sev-
eral ways to implement such dynamics because of the
simplicity of (2) and (3).

V. PRINCIPLE IN INFORMATION DECODING DYNAMICS

While the impact of information decoding dynamics is
illustrated by Figs.1 and 2, it is still uncertain why (2) and
(3) are so efficient in terms of extraction of information. To
reveal the underlying mechanism of information decoding,
let break (2) into three pieces as

dz(t)
dt

= z(t)z̃(t)︸ ︷︷ ︸
(B)

λrN0 [y(t)−λm]︸ ︷︷ ︸
(A)

+ronz̃(t)− roffz(t)︸ ︷︷ ︸
(C)

.

First, I focus on (A). By definition, λm = λd/λr =
λon−λoff

logλon/λoff
.

When Δλ := λon −λoff is small, then λm ≈ (λon +λoff)/2+
O(Δλ 2) holds. Thus, (A) is simply checking whether y(t)
is higher or lower than a threshold which is located at
almost the middle of λon and λoff. The more y(t) deviates
from λm, the more strongly y(t) drives z(t). Intuitively and
qualitatively, this behavior sounds reasonable because small
deviation is induced by noise more frequently than by actual
change in x(t) whereas large deviation may be induced
by change in x(t). However, (A) is linear with respect to
y(t), which cannot be automatically guaranteed by these
qualitative arguments. From the statistical viewpoint, (A) is
proposional to log-likelihood ratio between two hypothesis
that x(t) is on and off as

(A) =
[

λr

τ
N(t)−λdN0

]
= log

PP(N(t);λonτN0)

PP(N(t);λoffτN0)
.

Thus, (A) quantitatively relates extent of deviation with ex-
tent of likelihood to observe such deviation under alternative
hypothesis on the state of x(t).

In contrast to (A), (B) is determined solely by the state
of z(t). Because (A) is multiplied by (B), (B) determines
the sensitivity of z(t) to respond to the receptor signaling.
Since (B) = z(t)(1− z(t)), (B) is maximal when z(t) = 1/2
whereas (B) approaches to zero when z(t) is close to either
0 or 1. In other words, (2) is sensitive to input y(t) when z(t)
is producing ambiguous output z(t) = 1/2, but it is insensi-
tive to y(t) when z(t) is producing distinctive output. This
adaptive change in sensitivity also has an obvious statistical
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meaning and an intuitive explanation. By definition, z(t) is
the posterior probability that x(t) = on given the history of
y(t) up to t, Y (t). Thus, z(t)(1− z(t)) is equivalent to the
variance of this posterior probability. This fact means that the
sensitivity of z(t) is controlled by the uncertainty (variance)
of its estimation of x(t). In other words, z(t) is sensitive to
y(t) when it estimates the state of x(t) with low confidence
whereas it is insensitive when with high confidence, which
is understandable from our intuition.

Finally, (C) corresponds to the process to forget past
information on x(t). Since x(t) changes over time, y(t ′) of
long past does not reflect current state of x(t). Forgetting
is indispensable to reduce the effect of past observation by
y(t) for estimation of x(t). Quite interesting is that these intu-
itively important factors emerge auttomatically from Bayes’
rule and are integrated minimally as in (2). It should be noted
that the same interpretation is valid for (3).

VI. SUMMARY & DISCUSSION

In order to address the question how stable and robust
behaviors emerge from stochastic and unreliable components
in biological systems, in this article, I firstly showed that
relevant information can be extracted from apparently noisy
signal when appropriate dynamics processes that signal. This
result implies that apparent stochasticity and noisiness in
signal does not always mean that the signal does not contain
information.

Secondly, I demonstrated that such dynamics called in-
formation decoding dynamics here can be implemented by
using several biochemical reactions. This indicates that such
information decoding dynamics may be embedded in actual
biological systems especially when the systems produce
robust output by processing very noisy signal.

Finally, I clarified the mechanism how the decoding dy-
namics can extract information from noisy signal. Three fac-
tors play important roles. One is quantification of probability
of deviation in signal. Second one is adaptive sensitivity
change depending on the uncertainty of estimate of infor-
mation. Last one is the forgetting of past information. These
factors are integrated within the very simple equation (2) or
(3), and works as statistically optimal decoding dynamics.

While I treated very simple situation in which xt has
only two states and x(t)-dependent intensity of y(t) is fixed,
this approach can be extended for more complicated and
biologically realistic situations. Such extension is going to
be discussed in the near future.
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