
  

 

Abstract—This paper introduces a differential network 

biology for discovering tumor migration. We applied statistical 

methods to prioritize PPI candidates and an in situ proximity 

ligation assay to verify 67 endogenous PPIs among 21 

interlinked pathways in two hepatocellular carcinoma (HCC) 

cells, Huh7 (minimally migratory cells) and Mahlavu (highly 

migratory cells). Differential network biology analysis was 

applied to determine the novel interaction, CRKL-FLT1, has a 

high centrality ranking, and the expression of this interaction is 

strongly correlated with the migratory ability of HCC and other 

cancer cell lines. Knockdown of CRKL and FLT1 in HCC cells 

leads to a decrease in cell migration. This study demonstrated 

that functional exploration of a disease network with 

differential network in interlinked pathways via PPIs can be 

used to discover tumor migration. 

I. INTRODUCTION 

 Metastasis is one of the main causes of mortality from 

solid tumors, and metastasis is a poor prognostic factor for 

hepatocellular carcinoma (HCC). Understanding 

protein-protein interactions (PPIs) may uncover the generic 

organization of functional networks in cancer cells, when 

both the spatial and temporal aspects of the interactions are 

considered [1]. Recently, several studies applied protein 

network-based approach and differential network-based 

approach to identify markers to predict patient prognosis[2]. 

These computational approaches demonstrated great 

potential and could be further enhanced if more thorough PPI 

and pathway information is available especially at the cellular 

level and analyzed with a more sophisticated method.  

Cancer can be considered as perturbations of highly 

interlinked cellular networks. Our hypothesis is that 

uncovering new PPI links within or between, referred to as 

interlinked PPIs (cross-talk PPIs), different signaling 

pathways could recapitulate the relationship between the 

genotype and phenotype in HCC. Multiple signaling cascades 

are interlinked in cancer cells via a variety of cross-talk 

connections with other pathways leading to several of the 

hallmarks of cancer (e.g., proliferative signaling, 

angiogenesis, invasion, and survival) [3]. Therefore, targeting 

these interlinked pathways could provide an opportunity for 
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therapeutic application [3]. Here, we present a systems 

approach that computationally infers the interlinked pathways 

from numerous PPIs in HCC up-regulated genes and 

empirically detects endogenous PPIs using an in situ 

proximity ligation assay (PLA), which allows quantitative 

and localized detection of endogenous PPIs in cells [4]. 

Empirically, we validated 67 endogenous PPIs within or 

between signaling pathways in HCC. To the best of our 

knowledge, applying in situ PLA to this scale in cancer cells 

is unprecedented.  

We demonstrate its effectiveness with the identification of 

a prioritized interaction, CRKL-FLT1, which links the c-Met, 

IGF1, PDGFR-alpha and VEGFR1/ VEGFR2 pathways 

together. CRKL-FLT1 was identified as a hub in the PPI 

network in HCC, and crucial for migration in HCC cells. Our 

analysis result shows the expression of CRKL-FLT1 is 

strongly correlated with the migratory ability of cancer cell 

lines.  

      In summary, this study provides broad insight into tumor 

migration by building an interlinked pathway map via PPIs in 

HCC.  

II. METHODS  

A.  Identification of interlinked PPIs in cross-talk pathways 

in human HCC 

We systematically collected ~3000 differentially expressed 

HCC-related signatures [5, 6] and examined ~2,100 pathways 

from an integrated pathway database (ConsensusPathDB) [7]. 

Then, we prioritized 60 HCC-related pathways according to 

the HCC-related signatures and pathway datasets using a 

hypergeometric test with false discovery rate (FDR) 

adjustment. The proteins belonging to the HCC-related 

pathways (gray nodes on the left) were detected to determine 

whether collected PPIs (POINeT) [8] or predicted PPIs (PIPS) 

[9] with overexpressed patterns can link each pathway and 

enable potential interlinking. That is to say, each pathway 

member (single gene) among different HCC-related pathways 

was used to map each single protein for each PPI pair in the 

PPIs dataset, and thus it was possible to identify the cross-talk 

relationship. Because many genes/proteins are involved in 

multiple pathways, most interlinked PPIs map to several 

different pathways. These PPIs might link the cross-talk 

pathways together. In this step, we identified 97 proteins that 
participate in 375 PPIs occurring in overexpression patterns 

from HCC gene expression profiles, among the 60 

HCC-related pathways.  

B. Detection of protein-protein interaction by in situ 

proximity ligation assay 

Differential network biology reveals a positive correlation between a 

novel protein-protein interaction and cancer cells migration 
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Figure 1. (A-C) The tripartite-association of PPIs, pathways and cell lines and analysis of the differential interaction hubs 

in the PPI networks

 
Recently, the PLA was developed to detect and visualize 

endogenous PPIs and post-translational modifications of 

proteins with a high sensitivity and specificity (11, 23). To 

detect PPIs, the dual targets of primary antibody pairs are 

added. If an antibody pair is in close proximity, secondary 

antibodies with oligonucleotides will be close enough to 

serve as templates for the ligation of two additional linear 

oligonucleotides into a DNA circle. The DNA circle can be 

amplified with the oligonucleotide in one of the secondary 

antibodies using rolling circle amplification (RCA). RCA can 

then be hybridized with fluorescent-labeled oligonucleotides 

to reveal dot-signal representing both their subcellular 

locations and the frequency of the PPI occurrences (11, 23). 

The detection of a dot signal with signal ratio was defined as  

)//()/( negnegpospos CSCSSR  The PPI was determined to be a 

positive PPI only if  and )/( pospos CS  >10, 
posS  was the signal 

and 
posC  was the cell number for dual-recognition with one 

rabbit polyclonal antibody and one mouse monoclonal 

antibody; 
negS  was the signal and 

negC  was the cell number 

for the negative control, in which only one rabbit polyclonal 

antibody was added. 

C. Clustering and Visualization 

First, we elucidated the tripartite-interactions of positive 

PPIs, pathways, and cell lines. In all, 67 of the 194 PPIs tested 

via the in situ PLA method were considered positive PPIs in 

one or both of the cell lines (Mahlavu or Huh7). Thus, the 

positive PPIs can be grouped into three types: (1) Mahlavu 

Only, (2) Huh7 Only, and (3) Both Positive. A matrix M (Fig. 

2A) was prepared to store information regarding the 67 PPIs 

(rows), 21 pathways (columns) and cell lines: 
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In this study, we adopted a modified version of SMC, SMC0, 

which excludes SMC counts for attributes with both objects  

belonging to the non-existent state ( 0ijM below) in the 

calculation for both denominator and numerator. SMC0 is 

more robust than SMC for sparse data (data with many 

non-existent states), as in matrix M (Fig. 1A). SMC0 can also 

be termed the nominal version of Jaccard coefficient.  

To have a more structural and visual representation, we used 

SMC0 for representing the between rows (PPIs) and between 

columns (pathways) association structure and to identify PPI 

clusters with pathway groups. Here we sort the rows (PPI and 

columns (pathways) as follows: Two proximity matrices C 

(Fig. 1B) and R (Fig. 1C) were calculated using the modified 

simple matching coefficient representing the between rows 

(PPIs) and between columns (pathways)  
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D. Migration Assay 

For Mahlavu stable clones (Vehicle, shCRKL and shFLT1), 1 

x 10
4
 Mahlavu cells were suspended in 200 µl of DMEM  
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without serum and were seeded into the upper chamber, while 

750 µl of DMEM containing 10% FBS was added to the outer 

side of the chamber. For measuring migratory ability in 

different HCC cell lines (HepG2, PLC5, Huh7, SK-Hep1, and 

Mahlavu), 1 x 10
5 
cells were seeded into the upper chamber 

with 200µl of DMEM without serum. After being cultured in 

a 37°C, 5% CO
2
/95% air environment and allowed to adhere 

for 12-16 hours and then incubated, cells on the upper surface 

of the membrane were removed by a cotton tip applicator and 

migratory cells on the lower membrane surface were fixed by 

methanol and stained with Giemsa (Sigma-Aldrich). Cell 

migration values were determined by counting from three 

independent membranes and then normalized using vehicle 

cells to give a relative ratio.  

III. RESULTS  

An in situ proximity ligation assay (PLA) with the 

available paired antibodies was used to detect, validate and 

quantify the endogenous presence of 194 PPIs in two HCC 

cell lines, Huh7 (minimally migratory cells) and Mahlavu 

(highly migratory cells). We observed 67 PPIs (49 proteins) 

among 21 pathways in either Huh7 or Mahlavu cells. There 

are two key features of these datasets. First, according to a 

literature survey, 17 PPIs (including 11 PPIs from PIPS) of 

the 67 PPIs are novel PPIs identified in this study. Second, 

there are contrastingly different distributions of the in situ 

PLA signal for the 67 validated PPIs between Huh7 and 

Mahlavu, providing the opportunity to apply differential 

network biology to characterize tumor migration.  

In addition to revealing individual PPIs, our purpose here is 

to provide a global view of the 67 analyzed PPIs and 21 

pathways in two HCC cell lines (with different migratory 

abilities). Briefly, pair-wise modified version of simple 

matching coefficient (SMC0) was employed to construct both 

the between-pathway proximity matrix C (with 21

2C = 210 

pairs in Fig. 1B) and the between-PPI proximity R (with 67

2C = 

2211 pairs in Fig. 1C) in the first step. In the second step, we  

applied two dendrograms (hierarchical clustering trees) to 

sort the 21 pathways in C into five clusters of pathways with 

7, 5, 3, 3, or 3 pathways each and 67 PPIs in R as eight groups 

of PPIs. Heatmaps was applied to elucidate the 

tripartite-interactions (Fig. 1A-1C). Then we created three 

PPIs that are specific in Huh7, Mahlavu, either cell lines or 

none are color coded as cyan, magenta, purple, or white. 

Overall, the clustering analysis shows that most of the PPIs 

are involved in P1 pathway group, suggesting pathways in P1 

group might play an important role in hepatocarcinogenesis. 

PPIs in M1 can only be observed in Mahlavu cell (highly 

migratory cells) and belong to the P1 pathway group. 

Therefore, this allows for intuitive selection of candidate PPIs 

(e.g., CRKL-FLT1) from M1 for further functional 

characterization. 

A recent study suggests that a differential network biology 

approach, such as differential interaction hubs, is a promising 

approach to dynamic network discovery under disease state 

or speciation [10, 11]. These observations led us to measure 

the number of interactions in order to identify the differential 

interaction hubs for ranking essential proteins/pairs, which 

might be involved in migration in HCC from this PPI network 

(Fig. 2A). For each protein in the differentially expressed 

network, CRKL is the hub with the highest degree of 

centrality in Mahlavu cells (Fig. 2B). This topological 

analysis suggests that CRKL may play a crucial role in the 

malignant network, especially in the Mahlavu cells. FLT1, 

Figure 2. (A-B)The differential network biology in HCC cell lines (C) The images of in situ PLA signal for 

CRKL-FLT1 interaction in hepatocyte and five HCC cell lines were shown. 
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another hub with seven partners in Huh7 cells and six partners  

in Mahlavu cells, ranks second in degree centrality (Fig. 2A). 

These two hubs, CRKL and FLT1, interact with each other in 

the network of Mahlavu cells. Interaction between CRKL and 

FLT1, thus, has a higher connectivity than other interactions, 

suggesting that the CRKL-FLT1 interaction might be 

important. More importantly, FLT1 has seven interaction 

partners but only CRKL occurred in highly migratory cells 

(Fig. 2B), implying an unusual relationship between these 

two proteins. 

The role of CRKL, FLT1, and the prioritized CRKL-FLT1 

interaction, in HCC remains unclear. Thus, we measured 

CRKL-FLT1 interaction in hepatocyte and five different 

HCC cell lines (HepG2, Huh7, PLC5, SK-Hep1, and 

Mahlavu) (Fig. 2C). Comparing with migratory ability of five 

HCC cell lines, the CRKL-FLT1 interaction correlates with 

the migratory ability of the cells analyzed, which is consistent 

with our hypothesis. 

Moreover, we extend the measurement of CRKL-FLT1 

interaction and migratory ability in other cancer cells. The 

intensity of in situ PLA for CRKL-FLT1 interaction and 

migrated cells/HPF (high-power field) showed a positive 

correlation with a correlation coefficient of 0.886 (p < 0.001), 

as estimated p value by t-test for Pearson product-moment 

correlation when we observed five different HCC cell lines 

(HepG2, Huh7, PLC5, SK-Hep1, and Mahlavu) and four 

other cancer cells , including cervical cancer (HeLa), lung 

adenocarcinoma (A549), colon cancer (HT29), prostate 

cancer (PC3)  (Fig. 3A). The result indicated the expression 

of CRKL-FLT1 interaction is correlated with cell migration 

not only in HCC, but also in other cancer cells. Next, we 

established five different Mahlavu stable clones with 

knockdown of CRKL or FLT1 to investigate the biochemical 

function of CRKL and FLT1. The expression of CRKL-FLT1 

interaction was decreased in Mahlavu stable clones with 

knockdown of CRKL or FLT1 compared with vehicle control 

cells  (Fig. 3B). It shows the specificity of knockdown ability. 

We then tested the effect of reducing CRKL and FLT1 on 

migration in highly migratory Mahlavu cells. Depletion of 

CRKL and FLT1 decreased the migration of Mahlavu cells 

approximately 60% and 40%, respectively (Fig. 3C). 

Together, CRKL and FLT1 may play a crucial role in the 

regulation of metastasis in HCC. 

IV. CONCLUSION  

In summary, we anticipate that our integrated approach and  

analysis will improve the interpretation of interlinked PPIs 

and pathways and facilitate the development of novel 

prognosis markers and drug targets in HCC research. 
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