



Abstract— DNA sequence alignment is a cardinal process in

computational biology but also is much expensive

computationally when performing through traditional

computational platforms like CPU. Of many off the shelf

platforms explored for speeding up the computation process,

FPGA stands as the best candidate due to its performance per

dollar spent and performance per watt. These two advantages

make FPGA as the most appropriate choice for realizing the

aim of personal genomics. The previous implementation of

DNA sequence alignment did not take into consideration the

price of the device on which optimization was performed. This

paper presents optimization over previous FPGA

implementation that increases the overall speed-up achieved as

well as the price incurred by the platform that was optimized.

The optimizations are (1) The array of processing elements is

made to run on change in input value and not on clock, so

eliminating the need for tight clock synchronization, (2) the

implementation is unrestrained by the size of the sequences to

be aligned, (3) the waiting time required for the sequences to

load to FPGA is reduced to the minimum possible and (4) an

efficient method is devised to store the output matrix that make

possible to save the diagonal elements to be used in next pass, in

parallel with the computation of output matrix. Implemented

on Spartan3 FPGA, this implementation achieved 20 times

performance improvement in terms of CUPS over GPP

implementation.

I. INTRODUCTION

Sequence alignment is a resource-intensive operation,
compelling researchers to search out for a dedicated and
suitable platform as the general purpose CPU could not be
optimized to peculiarities of sequence alignment. The
collusion of high throughput generated by next generation
sequencing (NGS) technologies, exact sequence alignment
techniques and fast as well as cheap reconfigurable
platforms have converted the dream of personal genomics
into a possibility.

 The tested and trusted Smith-Waterman algorithm is
used on a reconfigurable system for aligning data generated
by NGS technologies. In [1], a comparison between three
Field Programmable Gate Array , Graphical Processing Unit
and Cell Broadband Engine reconfigurable platforms for
aligning biological sequences based on four parameters i.e.
speed, energy consumption and developmental costs has

Hurmat Ali Shah is M.Sc student at Department of Computer Systems

Engineering, UET Peshawar. 2500 Pakistan; (e-mail:

hurmat_engr@yahoo.com).
Laiq Hasan is with the department of Computer Systems Engineering,

University of Engineering and Technology Peshawar, Pakistan (e-mail:

laiqhasan@nwfpuet.edu.pk).
Nasir Ahmad is with the University of Engineering and Technology

Peshawar Pakistan working as a Assistant Professor at the department of

Computer Systems Engineering (e-mail: n.ahmad@nwfpuet.edu.pk).

been presented. They showed that FPGA outperform the
other two platforms in terms of performance per watt and
performance per dollar spent. The advantage of FPGA in
high performance computing is that, if used as accelerator,
computing density can be increased significantly and also
FPGA can benefit from the increased clock speed as
opposed to general microprocessors which have reached
their maximum clock speed.

 This paper presents an efficient FPGA model for
Deoxyribonucleic Acid sequences alignment which employs
different optimization techniques for performing the
required task on a low-price FPGA, making headway
towards personal genomics. Many of the high performance
implementations of DNA sequence alignment are available
but all of them face certain limitations. Besides the high
cost of the implementation platform, some are restricted by
sequence query length while others suffer from inefficient
use of the available memory. [2] Worked on reducing the
loading time of alignment matrix columns for subsequent
reuse by storing the columns on each processing element
(P.E.). But this lowered the space available for instantiating
PEs. [3] Designed a 2D systolic array for achieving a speed-
up of 160x for aligning two sequences. However there are
two main restrictions to this implementation i.e. the size of
the sequences to be aligned that was equal to the size of
systolic array and the PEs have to spend idle time until a
new sequence was loaded from DDRAM to the local
memory of FPGA. [4] Also has maximum sequence length
limitation as the sequences larger than 8192 characters are to
be aligned on host PC. [5] Used CREC reconfigurable
computer for speeding-up the biological sequence alignment
but due to implementation in high level language lost sight
of hardware level optimizations. [6] Provided multiple
improvements over the available designs like multiple stage
PE, pipelined mechanism that can support uneven stage
latencies and the compressed substitution matrix storage
structure. But the incorporation of these optimizations on the
Cray XDI 100 supercomputing platform also disfavored its
wide-scale use as it was not an inexpensive option. MGAP
[7], Kestrel [9] and Fuzion are based on concept of SIMD
architecture. [10] And [11] focused on efficiently designing
the PE for implementing the alignment of two sequences
based on smith-waterman algorithm. Some of the
implementations such as [6] and also [10] focused on
tailoring the PE design for various parameters of the
sequences to be aligned.

 Our implementation uses the highly efficient Smith-
Waterman systolic cell designed by [12]. Linear systolic
array is implemented instead of 2D array because globally
asynchronous timing can be employed to exploit the idle
time the hardware spends after the end of first run and

An Optimized and Low-cost FPGA-based DNA Sequence Alignment

– A Step towards Personal Genomics

Hurmat Ali Shah, Laiq Hasan, Nasir Ahmad

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 2696

waiting before the second run can be started of the 2D
systolic array. The linear systolic array is made to operate
asynchronously i.e. dependent on data changes and not on
strict clock synchronization. This saves much development
time and also enables the system to run on signal
propagation time of the circuit and eliminate the
overestimate of computation time caused by employing
clock [12]. The second optimization of our implementation
is that it is not restrained by the sequence lengths and can
align sequences of any length in multiple passes. The multi-
pass strategy of ours need not to communicate with host PC
every time the last of PE in the systolic array calculates the
last alignment score but instead fetches new characters from
local SRAM and the PEs start again processing. So our
system employs two different types of passes; one is from
host PC to SRAM of FPGA and another from the SRAM to
PEs. The third improvement of our implementation is that
our system need not to sit idle until all characters of the
sequences are loaded to SRAM of FPGA, instead our system
start aligning the two sequences at the instant when one
character from each of the sequences arrives at SRAM and
are transferred to the first PE for calculating the alignment
score. The fourth optimization is the novelty introduced for
storing the last column of alignment matrix after one pass
for subsequent use in next pass. The system is not halted for
the time the last column is stored to local SRAM before the
calculated score matrix is sent to host PC, but instead it is
performed in parallel to the calculation of the matrix i.e.
when the PEs are aligning the two sequences. This
optimized design is implemented on Spartan 3 FPGA, a low-
priced device, making our implementation a significant step
towards realizing the aim of personal genomics.

 The rest of paper is organized as; section 2 deals with
system design, section 3 provides the algorithms employed
for designing the system, section 4 presents results of the
study while section 5 concludes the paper.

II. SYSTEM DESIGN

Smith-Waterman algorithm is a dynamic programming
algorithm that finds similarity between two sequences by
aligning them locally. This algorithm assigns a score to the
characters assigned based on degree of similarity between
the two sequences. The recursive equations are given as;

 () {

 () ()

 ()

 ()

S(xi, yi) is similarity score whereas d is gap penalty while
i and j are lengths of the two sequences. SW alignment
algorithm has O(MN) space and time complexity of
computing the output matrix. To exploit the space and time
saving provided by SW algorithm, [11] designed an efficient
cell that computes the above equation. The cell design is
given in Figure 1;

The cell design has been optimized for linear systolic
array (LSA) implementation and exploits the computational
edges offered by it. The design does not have extra logic for
calculating the diagonal element but instead translates into
design logic the fact that actually the diagonal element

required for performing pair-wise alignment, is output of
previous processing element delayed by one clock cycle.

Figure 1 Cell design for SW alignment

Another spatial saving of LSA is that the up element is
the current value of the PE and need not to be calculated
separately. The design has used this fact and has also
hardcoded ‘0’ that saves hardware resources. For
functioning of the cell see [8]. Our system implements LSA
instead of 2D systolic array because of reasons given above.
LSA is a linear arrangement of processing element where
one PE takes input from its predecessor and passes it to its
successor synchronously. In our case the cell given above
was used as one PE. One PE computes one whole column of
output matrix in clock cycles equal to the number of anti-
diagonals in the matrix [9].

 Figure 2 shows block diagram of our implementation,
where each PE implements the cell given in Figure 1;

Let’s consider that Ns and Nq are two sequences to be

aligned and there are four PEs. BRAMs allocated for the
sequences have length of four. The two BRAMs receive
characters from the respective portion of DDRAM that
stores the whole of Ns and Nq. Four characters of each
sequence from DDRAM are transferred to respective BRAM
and aligned against each other. Each PE is fed with a
character from Nq and the character stays there as long as all
the characters from sequence Ns are not aligned with it.
After it is done the characters of both BRAMs are replaced
with new characters from DDRAM. The different lengths of
BRAM used for sequence Ns had depth around 500, so the
Ns stays there till all characters from Nq are aligned with it.
The depth of BRAM for Nq is not allowed to be greater than
500 due to scarcity of memory resources. Nq is often a
combination of many sequences or it may be whole genome
while an individual sequence stored in BRAM of Ns may not
be such long [14], [15].

Figure 2 Block Diagram of our implementation. The corner elements for PE

come from the previous pass. Output is delayed for one clock cycle to

synchronize reading from and writing to the output matrix H.

2697

The output matrix H is written and also read for saving
the last column to be used in next pass for aligning new
batch of Nq entries against the Ns. To avoid reading and
writing from the same location at the same time the writing
to H matrix is delayed for one clock cycle. For this purpose
the outputs are buffered. It makes the storing of last column
to run in parallel to calculating entries of matrix rather than
to halt the whole system for the time the last column is
transferred to another location. Obviously this time saving is
achieved at the expense of hardware resources but it is worth
the resources consumed. It is well illustrated by an example;
If Ns is of length 500 and the number of PEs are 25 then
after one pass the entries in H matrix are 12500, so the last
column have 500 entries and to save these 500 elements the
whole system has to remain idle for 500 clock cycles. After
these 500 characters are aligned with 25 characters stored in
the array of PEs, new batch of 25 characters are transferred
to the array of PEs and the Ns BRAM address is reset to zero
so the first PE can get the first character from sequence Ns
and align it to the new character from sequence Nq. As the
PE array is responding to the changes in Ns value, so no
tight clock synchronization is required to have the right
character in the right place. The first PE takes the diagonal
elements from the FIFO that contains the last column of the
previous computation. Diagonal elements to the rest of PEs
come from the previous PE. Figure 3 shows operation of the
system.

Figure 3 Execution flow diagram

Sequence Load remain active until all of the BRAMs
specified for Ns and Nq are occupied, but the system does
not wait for the full sequence to load to start its operation.
Instead the first two characters one from both Ns and Nq are
loaded to the first PE and in the cycle after that the second
PE get the second character from sequence Nq and the first
character of sequence Ns arrives from the first PE. In this
way the m

th
 PE starts functioning in the m

th
 cycle. So the m

th

PE is idle for m cycles after m characters from the sequence
Nq are aligned with whole of sequence Ns and the (m-1)

th
 PE

is idle for (m-1) cycles. The cumulative effect can be
reduced by increasing the number of PEs but our design
keeps the effect to the minimum by making the sequence
load and operation of the PEs array run in parallel. This is
done by having two distinct addresses for reading and
writing. It has complicated the designing of BRAM address
control unit but has in turn blessed the system with overall
time saving.

III. BRAM ADDRESS CONTROL UNIT

The hard part of the system to deal with is BRAM
address control unit. To achieve the parallelism, read and

write addresses need to be generated according to different
conditions of the system. BRAM address control unit for
sequence Ns is relatively simple as it resets the read address
to zero after one pass i.e. after the last character of sequence
Ns is aligned with last of Nq stored in the last PE.
Calculating read and write addresses for sequence Nq is
rather complex because the characters to be read from
sequence Nq is dependent on the number of PEs. Figure 4
gives a block diagram representation.

Figure 4 Block Diagram of RAM.

Following explain the flags;

 we = enabling writing the data_in to BRAM

 re = enabling reading to D_out

 NP = Next Pass. It is turned on when the last

character of sequence Ns is aligned to the character

from Nq stored in last PE.

 FA= Full Alignment. It is turned on when the last

character of Ns is aligned with last character of Nq

stored in BRAM of Nq.

The different algorithms used for calculating read and
write addresses for both Ns and Nq are given below.

Let’s consider the length of Ns is i and that of Nq is j and
there are m PEs.

For reading from Ns

If Ns_read_addr == i and NP == On

Ns_we = Off

Ns_re = On
Ns_read_addr = 0

end if

For reading from Nq

if Ns_write_addr < i

Ns_write_addr = Ns_write_addr + 1

Ns_we = On
Ns_re = Off

For loading new sequence instead of Ns

If Ns_write_addr == i and FA = On
Ns_write_addr = 0;

We = On;

Re =off;
end if

For writing to Nq

if NP == Off
Nq_read_addr = Nq_read_addr + 1

Nq_we= Off

Nq_re =On
end if

For reading from Nq

if NP == On

2698

Nq_re = Off

end if

For writing to Nq

If Nq_write_addr < j

Nq_write_addr = Nq_write_addr + 1
Nq_re = Off

Nq_we = On

end if

Loading new sequence to Nq BRAM from DDRAM

if FA == On

Nq_write_addr = 0

IV. RESULTS AND DISCUSSION

Our system was checked to align two array of size 500
each. Considering each character was of two bits (a DNA
character can be A, C, T and G. This can be coded using two
bits), a significant space of BRAM was left for storing the
output matrix each element of which was 16-bit wide. This
reduces the number of times the FPGA has to send the
output matrix to DDRAM. The array of PEs do not have to
sit idle until all of the sequence characters are loaded to
FPGA, instead all PEs operate in parallel. The most often
performance metric used for computational biology
applications is Cells Update per Second (CUPS) and is given
as;

Performance in CUPS = No. of PEs x Operating frequency

The device we used was Spartan 3 XC3S250E. We were
able to instantiate an array of PEs of size 35 on the said
device. The operating frequency shown by post place and
route tool was 50 MHz, so the performance of our system is;

Performance = 35 x 50 MHz = 1.75 GCUPS

The performance gain is significant given the low price
of the device used. The performance increases linearly with
increasing the number of PEs. [1] Evaluated performance of
different platforms for biological sequence alignment. Table
1 compares the CPU implementation of [1] with ours.

TABLE 1 COMPARING WITH GPP IMPLEMENTATION

Implementation Performance

[1] 0.085 GCUPS

Ours 1.75 GCUPS

Performance Improvement 20x

[5] Was able to implement an array of PEs of size 13 on
Spartan 3 1500 chip. Table 2 presents the efficiency of our
design in terms of hardware utilization. Our design more
efficiently utilizes hardware as it was able to realize more
PEs in limited hardware resources in contrast to [5] that
realized less PEs in larger hardware resources available.

TABLE 2 IMPROVEMENT IN HARDWARE UTILIZATION

Implementation Device Size of PE array

[5] Spartan3 1500 13

Ours Spartan3 XC3S250 35

Hardware utilization

improvement

 2.69

V. CONCLUSIONS AND FUTURE WORK

This paper presented an efficient system design for
aligning DNA sequences. The implementation was carried
out on a low-priced FPGA that reduces the developmental

cost and makes it suitable to be employed in personal
genomics. Four different improvements were carried out
over the available FPGA implementation that made possible
alignment of large DNA sequences on limited hardware
resources. The idle time of PEs was reduced to the minimum
possible that resulted in faster alignment of large DNA
sequences. The implementation resulted in 20 times GCUPS
improvement over GPP implementation and hardware
utilization was improved by 2.69 times. The design can be
extended further to align a query with whole genome by
increasing the number of PEs. This can be done by using an
FPGA device that contains more hardware resources.

The output matrix need to be sent every time character
from sequence Nq equal to the number of PEs is aligned
with all characters of sequence Ns. This incurs heavy
communication overhead. We aim to reduce this overhead
by incorporating two improvements in our implementation.
(1) The space required for storing the output matrix will be
reduced by storing the elements more efficiently. (2)
Improving PC ↔ FPGA communication by using faster
communication techniques as Multi-Gigabit transceiver.

REFERENCES

[1] Li, Heng, and Nils Homer. "A survey of sequence alignment
algorithms for next-generation sequencing." Briefings in

Bioinformatics 11.5 (2010): 473-483.

[2] Benkrid, Khaled, et al. "High performance biological pairwise
sequence alignment: FPGA versus GPU versus cell BE versus GPP."

International Journal of Reconfigurable Computing 2012 (2012): 7.
[3] Gok, Mustafa, and Caglar Yilmaz. "Efficient Cell Designs for

Systolic Smith-Waterman Implementations." Field Programmable

Logic and Applications, 2006. FPL'06. International Conference on.
IEEE, 2006.

[4] Li, Isaac TS, Warren Shum, and Kevin Truong. "160-fold

acceleration of the Smith-Waterman algorithm using a field
programmable gate array (FPGA)." BMC bioinformatics 8.1 (2007):

185.

[5] Oliver, Tim, Bertil Schmidt, and Douglas Maskell. "Hyper
customized processors for bio-sequence database scanning on

FPGAs." Proceedings of the 2005 ACM/SIGDA 13th international

symposium on Field-programmable gate arrays. ACM, 2005.
[6] Szente, Balint, et al. "A General Smith-Waterman Algorithm

Implementation Using the CREC Reconfigurable Computer."

[7] Hsien-Yu Liao, Meng-Lai Yin, Yi Cheng, A Parallel Implementation
of the Smith-Waterman Algorithm for Massive Sequences Searching,

IEEE EMBS, 2004.

[8] Borah, M., Bajwa, R.S., Hannenhalli, S., Irwin, M.J.: A SIMD
solution to the sequence comparison problem on the MGAP, in Proc.

ASAP’94, IEEE CS (1994) 144-160.

[9] Di Bias, A., et al. "The UCSC Kestrel parallel processor." Parallel and
Distributed Systems, IEEE Transactions on 16.1 (2005): 80-92.

[10] Oliver, Tim, Bertil Schmidt, and Douglas Maskell. "Hyper customized

processors for bio-sequence database scanning on FPGAs."
Proceedings of the 2005 ACM/SIGDA 13th international symposium

on Field-programmable gate arrays. ACM, 2005.

[11] Yu, Chi Wai, et al. "A Smith-Waterman systolic cell." New
Algorithms, Architectures and Applications for Reconfigurable

Computing (2005): 291-300.

[12] L. Hasan, “Hardwar acceleration of biological sequence alignment”,
Ph.D. thesis, TU Delft,2011.

[13] Schmidt, B., Schröder, H., Schimmler, M: Massively Parallel

Solutions for Molecular Sequence Analysis, Proc.1st IEEE Int.
Workshop on High Performance Computational Biology, Ft.

Lauderdale, Florida, 2002.

[14] Boeckmann, Brigitte, et al. "The SWISS-PROT protein
knowledgebase and its supplement TrEMBL in 2003." Nucleic acids

research 31.1 (2003): 365-370.

[15] Schuster, Stephan C. "Next-generation sequencing transforms today’s
biology." Nature 200.8 (2007).

2699

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

