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Abstract— A comparative analysis of four multi-label clas-
sification methods is performed in order to determine the
best topology for the problem of protein function prediction,
using support vector machines as base classifiers. Comparisons
are done in terms of performance and computational cost
of parallelized versions of the algorithms, for determining its
applicability in high-throughput scenarios. Results show that
the performance of the binary relevance strategy, together with
a technique of class balance, remains above several recently
proposed techniques for the problem at hand, while employing
the smallest computational cost when parallelized. However,
stacked classfiers and chain clasifications can be conveniently
used in pipelines, due to the low number of false positives
reported.

Index Terms— Bioinformatics, Multi-label learning, Protein
annotation, Support Vector Machines.

I. INTRODUCTION

The exponential growth of information derived from
sequenced genomes, and so the number of protein se-
quences with missing annotations increases rapidly. Cose-
quently,functional annotation of proteins has become one of
the central problems in molecular biology. Manually curating
of annotations turns out to be impossible because of the
large amount of data. Thus, the need for computational tools
allowing to automate functional annotations has continued to
rise in recent years.

Automatic functional annotation of proteins has fol-
lowed three main approaches: homology-based methods,
subsequence-based methods, and feature-based methods.
In homology-based methods, query proteins are searched
against public databases using local alignment search tools
such as BLAST or PSI-BLAST and annotations with the
highest scoring hits are transferred onto the new sequence
[1]. Despite some known drawbacks such as low sensitivity,
and propagation of database errors, this approach is the most
widely used among biologists, because as it is historically
the first successful method. Subsequence-based methods,
search for highly conserved sub-sequences that could be
related to protein functionality. To this end, it is common to
use stochastic models describing protein families. Nowadays
large collections of protein families and domains can be
found in databases like [2], where the families are repre-
sented by Hidden Markov Models (HMM). These approaches,
however, tend to have low specificity [3].
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Feature-based methods compute a set of numerical fea-
tures from protein sequences and search for a mathematical
function, known as classifier, that correctly assigns new
proteins to their true classes from the computed feature
space. Since proteins can be associated to multiple func-
tional categories at the same time, current machine learning
methods commonly use binary relevance strategies, that is,
one classifier is trained in recognizing each class in an
independent way [3], [4]. However, this strategy does not
consider correlations among classes and, consequently, can
miss potentially important information [5]

Multilabel learning is a branch of machine learning where
multiple target labels must be assigned to each instance.
Multilabel learning methods can be grouped into two cate-
gories: problem transformation and algorithm adaptation [6].
Methods of the first group transform the learning task into
one or more single-label classification problems by employ-
ing several topologies [4], [7], [8], [9]. The second group
of methods extends specific learning algorithms in order to
handle multilabel data directly [10], [11]. In this context,
problem transformation methods provide major flexibility
since they can be easily implemented from traditional learn-
ing algorithms and thus users are able to employ standard
software packages. Furthermore, high-throughput methods
can be easily integrated, which is essential for the scien-
tific community working in Biomedical and Bioinformatics
applications, mainly in genomics and proteomics.

This paper presents a comparative analysis aimed to de-
termine the best topology for multi-label classification based
on problem transformation strategies, for the problem of
protein function prediction. Comparisons are done in terms
of performance and computational cost, over four different
topologies: Binary Relevance, Pairwise Comparisson, Chain
Classifications, and Stacked Classifiers. In all cases, support
vector machines are used as baseline classifiers.

II. MATERIALS AND METHODS

The notations that will be used throughout this paper
are defined as follows. Consider a classification problem
where each instance (x ∈ X can be associated with one
or more of Q possible classes. Then, let T = {X,Y } be
the training set, where X is the feature matrix, containing
the training instances xn, n = 1, 2, ..., N in its rows, while
Y is the label matrix, with each row being a binary vector
yn = {y1n, y2n, ..., yqn, ..., yQn } with yqn ∈ {1,−1} indicating
wether or not the n-th instance must be associated to de q-th
class. The goal of the multilabel classification is to use the
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information in T for obtaining a classifier h : X → Y , that
correctly assigns a subset of labels to new instances.

Methods for multi-label classification based on the trans-
formation of the problem, define different topologies for
decomposing h into a set of binary classifiers hk, k =
1, 2, ...,K in order to better explode the information con-
tained in the training set.

A. Binary Relevant (BR)
In this topology, a number of classifiers equal to the

number of classes is trained (K := Q). For training each
classifier, the whole feature matrix is used Xk := (X),
while only the q-th column of the label matrix is considered.
This way, the set of labels for each instance is redefined as
Yk = yk. Therefore, the following holds:

hk : X → {1,−1}

So, each binary classifier hk predicts one of the labels
associated with the instances.

B. Pairwise Comparison (PC)
In this topology, one binary classifier is

trained for each pair of classes. So, let P =
{(1, 2), (2, 1), (2, 3), ..., (p, q), ..., (Q,Q − 1)} be the set of
all 2−permutations of the set of numbers 1, . . . , Q. The total
number of classifiers will then be K := |P | = Q(Q − 1).
Let suppose now that the k-th classifier hk is associated
to the pair of classes (p, q). Then, for training such a
classifier, the feature matrix will include only the rows
corresponding to the instances related to those classes,
that is, the rows of the feature matrix Xk will be those
instances {xn|(yqn = 1) ∧ (ypn = 1)}. In this case, the rows
of the label matrix will be assigned as Yk = yp. Note that
the classifiers associated to the pairs (p, q) and (q, p) will
have the same feature matrix but will differ in their label
matrices.

Finally, as there are Q(Q− 1) class assignments for each
instance, the Q labels are selected using a voting scheme.
Each label is considered to be true if the number of votes
for that class is higher than a predefined threshold that
maximizes a given performance measure. This approach is
known as OneThreshold in [7].

C. Chain Clasifications (CC)
In this scheme, classifiers are trained in a predefined order.

As in Binary Relevant it is necessary to build K := Q
classifiers, but this time, the feature matrix for the k−th
classifier is enriched with the output of the previous one.

That is,

X1 := X,X2 = [X1, h1(X1)], . . . ,

Xk = [Xk−1, hk−1(Xk−1)], . . . ,

XK = [XK−1, hK−1(XK−1)]

This way, each classifier will be designed as:

hk : X × {1,−1}j−1 → {1,−1}

Predictions are done by successfully applying classifiers
in the order of the chain [8].

D. Stacked Classifiers (STA)

In this scheme, two levels of classifiers are constructed.
For the first level, denoted by h1, Binary Relevant method
is used. The second level is denoted as h2, and is constructed
by including the predictions of the previous level in the
feature set, that is,

X2
1 = [x, h12(X), . . . , h1Q(x)), . . . ,

X2
Q = [x, h11(X), . . . , h1Q−1(x))

Therefore the classifier for the k-th class in the second
level will be in the form [9]:

h2k : X × {1,−1}Q−1 → {1,−1}

III. EXPERIMETAL SETUP

The workflow of the experimental setup for each base-
line classifier has three main components: Database, which
comprises the construction and pre-processing of the dataset;
parameter tuning, comprising the steps for searching opti-
mal parameters for the classifier, and classification, which
describes training and testing of the models.

Figure 1 illustrates the wokflow of the process developed
for each baseline classifier. Ovals, squares and diamonds
are used to depict datasets, computational processes, and
conditional statements, respectively.
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Fig. 1. Scheme of the baseline classifiers

A. Database

The database is comprised of ten different classes cor-
responding to the ontology molecular function, grouping
2326 proteins belonging to the Embryophyta taxonomy of
the Uniprot database [12] with at least one annotation in
the Gene Ontology Annotation project [13]. Proteins with
unknown evidence of the existence or resulting from com-
putational predictions were discarded. Aiming to avoid over-
training, the dataset does not contain protein sequences with
a sequence identity superior to 40%, which were discarded
by employing the CD-HIT software package [14]. After that,
categories with less than 100 sequences were discarded in
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TABLE I
NUMBER OF PROTEIN SEQUENCES PER CLASS

Functions Samples Functions Samples

DnaBind* 143 ProtBind 1117
TranscFact 102 Kinase 103
Catal* 401 Transf* 217
Transp 133 Hydrol* 237
Bind* 194 TranscReg* 152

order to ensure statistically significant results. The number of
sequences per class is shown in I. Proteins were characterized
according to the schema used in [4].

B. Parameter tuning

Support vector machines (SVM) are used as baseline
classifiers and, consequently their free parameters must be
properly tuned. Such tuning is carried out by a Particle
Swarm Optimization (PSO) meta-heuristic [15] which ex-
plores a two-dimensional search space generated by all the
possible pairs of values that can be assigned to the trade-off
constant of the SVM (C) and the dispersion parameter of
the gaussian kernel (σ). To this end, a new partition on the
training set is done following a cross-validation of ten folds,
in order to avoid over-training of the models. Each resulting
training set is balanced by Synthetic Minority Oversampling
Technique (SMOTE) [16]. The limits of the search space were
defined as (10−2,104) for σ and (1,10−7) for C. Additionally,
the number of particles for the search was set to 10, while
the maximum number of iterations was set to 30.

C. Classification

Due to the nature of the problem and the transforma-
tion methods, a high class imbalance in binary classifiers
is induced. If untreated, it could seriously deteriorate the
sensitivity of the prediction. For this reason, a method of
oversampling called SMOTE was used. The main advan-
tage of this method is that prevents excess of adjustment
commonly caused by random over-sampling, since synthetic
samples are not exact copies of the original ones.

Classification is implemented following the strategies de-
scribed in the section II with support vector machines (SVM)
as base classifiers. All results are derived from a 10-fold
cross-validation, using the parameters of the SVM that were
tuned in the previous stage.

IV. RESULTS AND DISCUSSION

Table III shows the performance of each strategy over the
whole set of classes. Best results for each metric on each
class are highlighted in boldface. The sensitivity (Sn), speci-
ficity (Sp), geometric mean (Gm) and, Matthews correlation
coefficient (Mcc) are used as classification performance
measures:

Sn =
nTP

nTP + nFN
Sp =

nTN

nTN + nFP

Gm =

√
nTPnTN

(nTP + nFN )(nTN + nFP )

Mcc =
nTPnTN − nFPnFN√

(nTP + nFP )(nTP + nFN )(nTN + nFP )(nTN + nFN )

Being nTP , nFP , nTN , and nFN the true positive, false
positive, true negative and false negative, respectively. Addi-
tionally, in order to analyze the applicability of each strategy
over high-throughput tasks, Table II presents the time in
seconds for the training stage on one of the partitions. These
times are measured in its parallelized versions: notation
Classifiers denotes the number of parallel processes com-
patible with the topology, while notation Cores indicates the
number of threads that are used in practice, given to the
characteristics of the machine; a number of 20 threads was
used as limit value for parallel processing. The tests were
performed using a dual Intelr Xeon X5660 with 12 cores at
2.8 GHz, under a Linux machine and without limitations of
ram. The scripts were implemented using the R Project for
Statistical Computing.

Since BR topology has been considered as a naive ap-
proach to multi-label learning because correlations between
classes are ignored [5], new proposals have emerged in
order to take account of these correlations. In CC and STA
the correlations are considered by incorporating information
from the labels of the other classes as input to subsequent
stages of classification. The results in table III show that
incorporating the label information, rises specificity, but
seriously degrades sensitivity. This is evident in the Table
III where the sensitivity of STA is lower than the one
reached by BR for all classes. On the other hand, for
CC the increase of specificity and consequent decrease
of sensitivity occurs gradually according to the order of
defined chain. Due to this order, the classes Catal, Tranf,
and Hydrol have the lowest sensitivity, since they are the
last ones in the chain. The chain is defined taking the results
in descending order acquired by BR in Gm, thus leaving:
ProtBind, Transp, TranscFact, TranscReg, DnaBind, Kinase,
Transf, Catal, Bind, and Hydrol.

This loss of sensitivity is consistent with the fact that new
topologies are designed to minimize the hamming loss [7],
[8], [9], which causes the system to have high accuracies
without regarding the class membership of correctly classi-
fied instances. This is, however, a misleading measure when
classes are not equal in size, since instances of the target
class represent a minor percentage of the total size of the
dataset. As a result, they emphasize on the specificity, while
causing a loss of sensitivity. In the process of functional
annotation of proteins, however, it is important to obtain
high specificities and sensitivities together, i. e. to maximize
a balanced measure such as geometric mean or Matthews
correlation coefficient. This is clearly accomplished with the
BR strategy, also with the advantage that it is much faster
than the other topologies studied.

V. CONCLUSION

A comparison of four of the most relevant multilabel
classification methods, based on problem transformation was
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TABLE III
Sn , Sp , Gm , AND Mcc VALUES OVER 10 FUNCIONAL CLASSES

Function Sensitivity Specificity Geomatric Mean Matthews Correlation Coefficient

BR PC CC STA BR PC CC STA BR PC CC STA BR PC CC STA

DnaBind* 0.818 0.790 0.392 0.504 0.804 0.764 0.924 0.908 0.811 0.777 0.602 0.676 0.353 0.3 0.258 0.308
TranscFact 0.922 0.775 0.667 0.099 0.818 0.831 0.705 0.979 0.868 0.802 0.685 0.31 0.369 0.312 0.164 0.103
Catal* 0.736 0.923 0.274 0.177 0.696 0.353 0.872 0.975 0.716 0.571 0.489 0.416 0.336 0.226 0.154 0.261
Transp 0.82 0.774 0.752 0.692 0.938 0.921 0.944 0.973 0.877 0.844 0.842 0.820 0.574 0.498 0.549 0.627
Bind* 0.717 0.701 0.536 0.541 0.709 0.646 0.788 0.942 0.713 0.673 0.65 0.714 0.251 0.197 0.210 0.45
ProtBind 0.978 0.983 0.978 0.167 0.969 0.056 0.969 0.943 0.976 0.235 0.976 0.396 0.948 0.103 0.948 0.175
Kinase 0.864 0.447 0.534 0.427 0.748 0.812 0.774 0.876 0.804 0.602 0.643 0.612 0.280 0.133 0.148 0.182
Transf* 0.816 0.793 0.198 0.129 0.722 0.610 0.914 0.986 0.767 0.696 0.426 0.357 0.333 0.237 0.111 0.217
Hydrol* 0.713 0.738 0.072 0.190 0.656 0.551 0.913 0.978 0.684 0.638 0.256 0.431 0.23 0.175 -0.016 0.26
TranscReg* 0.888 0.796 0.493 0.566 0.771 0.769 0.890 0.874 0.827 0.782 0.663 0.703 0.366 0.315 0.277 0.301

0.827 0.772 0.459 0.349 0.783 0.631 0.839 0.944 0.804 0.662 0.592 0.544 0.404 0.25 0.219 0.288

TABLE II
DETAILS IN THE PARALLELIZATION

Details Topology

BR PC CC STA

Times 2270.6 2574.2 32286.5 3634.27
Cores 10 20 1 20

Classifiers 10 90 1 20

carried out, in order to identify the most suitable topology
classification to the problem of protein function prediction.
The methods were compared by specificity and sensitivity
as diagnostic measures and the geometric mean and the
Matthews correlation coefficient as average overall perfor-
mances. Additionally, the training time of each strategy in
their parallelized versions was measured as an indicator of
their feasibility to be used for high-throughput tasks.

The results show that the best topology in terms of
global classification performance is BR, which also shows
the smallest computational cost when parallelized. However,
STA and CC can be conveniently used in pipelines, due to
the low number of false positives reported.

As future work, generate a classification scheme to capture
the correlations while maintaining linear complexity front
to the classes, the same way that BR, and additionally
compagnie with the fact of having unbalanced databases.
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