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Abstract² The use of GPGPU programming paradigm 
(running CUDA-enabled algorithms on GPU cards) in 
Bioinformatics showed promising results [1]. As such a similar 
approach can be used to speedup other algorithms such as 
CAST, a popular tool used for masking low-complexity regions 
(LCRs) in protein sequences [2] with increased sensitivity. We 
developed and implemented a CUDA-enabled version 
(GPU_CAST) of the multi-threaded version of CAST software 
first presented in [3] and optimized in [4].  The proposed 
software implementation uses the nVIDIA CUDA libraries and 
the GPGPU programming paradigm to take advantage of the 
inherent parallel characteristics of the CAST algorithm to 
execute the calculations on the GPU card of the host computer 
system. The GPU-based implementation presented in this work, 
is compared against the multi-threaded, multi-core optimized 
version of CAST  [4] and yielded speedups of 5x-10x for large 
protein sequence datasets. 

I. INTRODUCTION 

Proteomics ± the study of the proteins of biological 
species (including human) ± has revolutionized the way 
biological research is currently performed. As huge amounts 
of sequence data are currently being produced worldwide at 
an increasing pace, extensive downstream computational 
analysis is required. Typical computational pipelines for 
proteomics feature a computationally intensive sequence 
comparison component; this is justified by the empirical 
observation that genes and proteins with similar sequences 
usually perform similar functions. Therefore, sequence 
similarity search serves for inferring functional and structural 
analogy for biological macromolecules [5] [6]. 

Traditionally, such complex algorithms have been 
implemented on high-performance computing clusters and 
multiprocessor/multicore systems [7]. There has been a 
tremendous amount of effort in designing efficient systems 
that can take advantage of the inherent parallelism 
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opportunities of such algorithms; however, the specialized 
nature of algorithms targeting bioinformatics, limits the 
number of end-users for such platforms, thus the costs of 
possible custom hardware solutions tend to be extremely 
high. As such, alternative technologies that can better balance 
the cost and performance constraints can be more efficient 
for targeting the bioinformatics research communities.  

Emerging technologies such as general purpose 
computing on graphics processing units (GPGPU) are prime 
candidates for improving performance of bioinformatics 
applications. GPGPU implementations have been recently 
developed to facilitate the BLAST (Basic Local Alignment 
Search Tool) algorithm and the resulting GPU-BLAST 
exhibited a 4x speedup [1]. GPGPU-enabled GPU cards are 
composed of a massive number of processing elements 
designed to host multiple threads that execute the same 
instructions over different data in parallel. Using this 
programming paradigm, normally we can accelerate data-
intensive applications, such as CAST.  

In this paper, we present a first attempt to accelerate the 
performance of CAST using GPGPU programming 
paradigm. The GPGPU-enabled version developed in this 
work is compared against the optimized multi-threaded 
version of CAST presented in earlier work in order to 
evaluate the proposed implementation. The paper is 
partitioned as follows: Section II provides background 
information on CAST algorithm; Sections III and IV discuss 
the GPGPU programming paradigm and related work in 
bioinformatics; Section V and VI describe and evaluate 
respectively the proposed implementation, and Section VII 
concludes the paper. 

II. BACKGROUND  

Comparison of biological macromolecular sequences (i.e. 
protein, DNA, RNA) is a key computational task for the 
characterization of genes and proteins massively identified 
through genome projects. This process is facilitated by rapid 
and sensitive tools, such as the BLAST heuristic algorithm 
[8]. In principle, high sequence similarity between a query 
sequence and an annotated database entry, can be used to 
obtain a reliable function prediction for the query. A pitfall of 
this approach may originate from the presence of LCRs, 
which are source of unnaturally high scores for 
compositionally biased sequence pairs that may otherwise be 
biologically unrelated. A way to overcome this situation is 
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Figure 1.  Pseudocode for the CAST algorithm. LCR detection is 

performed by iteratively comparing input S with degenerate 

homopolymers (poly-residues) of the 20 naturaly occuring amino 

acids. For further details see [2]. 

masking LCRs to significantly improve the reliability of 
homology detection and the quality of function prediction. 

CAST [2] is an iterative method (see Fig.1 for details) for 
detecting and masking LCRs in protein sequences, resulting 
in more sensitive database searches compared to SEG [9]. It 
is formulated as a clever modification of the Smith-
Waterman local sequence alignment algorithm. CAST 
identifies local similarities of a query sequence against 
degenerate sequences corresponding to the 20 possible amino 
acid homopolymers of arbitrary length without permitting for 
gaps, using a suitable substitution matrix. Therefore, on top 
of the detection of LCRs, CAST is also able to associate 
LCRs with a specific residue type ± thus enabling selective 
masking. CAST iteratively performs LCR detection and 
masking steps to prevent unnecessary masking due to cross-
dependencies between amino acid residue types, provided the 
detected similarities exceed an empirically defined threshold 
value (T). With the use of the BLOSUM62 substitution 
matrix, the optimal value T = 40 is used. In practice, a variant 
of BLOSUM62 serves as the default scoring matrix: the 
VFRUHV�RI�HDFK�UHVLGXH� W\SH�DJDLQVW� WKH�QHXWUDO� W\SH� µ;¶��DUH�
computed as the mean value of the amino acid substitution 
scores for the respective residue type. 

The algorithm shown in Fig.1 receives as input a protein 
sequence, and, searches for the LCR candidates (highest 
scoring segments- HSS) of each natural amino acid type. It 
then selects the HSS with the maximum score, and if that 
score is less than the threshold T, it ends outputting 
discovered LCRs; otherwise, it replaces each occurrence of 
the max scoring residue type in the highest scoring segment 
UHJLRQ� ZLWK� DQ� µ;¶� �L�H�� D� QHXWUDO� DPLQR� DFLG�� DQG� LWHUDWHV�
through the updated sequence. For each discovered LCR its 
residue type, the sequential position (start and end) and 
computed score are reported. Further details of the algorithm 
can be found in [2].  

III. GPGPU PROGRAMMING PARADIGM 

GPGPU (General Purpose computing on Graphic 
Processing Units) is a programming model that enables the 

use of the processing capabilities of the graphic cards present 
in modern-day computers for executing code that 
traditionally was executed on CPUs. However, the processing 
elements of GPU cards are designed specifically for graphics 
and thus are very restrictive in operations and programming. 
As such, GPUs are only effective for problems that can be 
solved using stream processing and their hardware can be 
used only when using specialized API such as OpenCL and 
nVidia CUDA libraries. 

CUDA is the programming model developed by nVidia 
and implemented by the company's graphic cards [10]. 
CUDA libraries give access to a virtual instruction set for 
industry-standard programming languages (such as C/C++ 
and Fortran) that allows software developers to efficiently 
map applications to be executed on GPU cards. A typical 
CUDA processing flow is: a) Copy data from CPU memory 
to GPU memory; 2) CPU instructs the GPU to start 
processing the desired code - kernel; 3) GPU executes the 
kernel code in parallel; 4) Copy the results from GPU 
memory back to CPU memory. 

  Using CUDA has limitations such as: unavoidable 
memory transfer overheads between CPU and GPU 
memories, limited memory resources per GPU core and 
adjustments needed for double floating number operations. 
However, provides a tool that enables developers to harness 
the processing capabilities of the hundreds cores present on 
nVidia's graphic cards.  

IV. RELATED WORK 

GPGPU programming is extensively used in 
bioinformatics since the beginning [10], as most of the 
applications used in the field are computationally complex 
and execute of massive datasets - characteristics that allow 
extensive utilization of the GPGPU programming 
capabilities. While not all algorithms perform well when 
executed on GPUs [11], previous attempts on developing 
CUDA-enabled implementations for bioinformatics 
applications showed promising results. The GPU-based 
implementation of Smith-Waterman [12] showed speedups of 
2x-30x over any previous implementation. GPU-BLAST [1] 
showed speedups between 3x-4x for all test cases. GPU 
technology used in Markov clustering showed speedups of 
3x-8x [13]. The pairwise local sequence alignment program 
proposed in [14] showed 10-fold speedup as well. Taking the 
above non-exhaustive list into consideration, we can indeed 
deduct that   algorithms used in bioinformatics applications 
are prime candidates for developing GPU-based versions. 

V. PROPOSED IMPLEMENTATION 

GPU_CAST follows a similar workflow with the 
optimized multi-threaded software presented in [4]. However, 
some fundamental differences do exist in order to allow 
higher performance when executed on the GPU. 

The sequence data are fetched in batches of predefined 
size (N=50, due to GPU shared memory size limitations). For 
each batch, a kernel execution is prepared by the host CPU. 
Firstly, the batch's data is transferred from the main memory 
to the GPU memory and stored in the GPU's global memory. 
Then, the kernel is invoked. The GPU_CAST calculation is 

Algorithm CAST 
Input: A protein sequence S 
Output: The sequence masked for LCRs 
 
residues  8 (A, C, D, ..., Y) 
hscore  8��( 0, 0, 0, ...0) 
from   8 0 
to    8 0 
neutral 8 X 
 
do 
  for each rest in residues 
   (hscore[res], from, to) 8 detectBias(S, res) 

  hscoreMAX 8 max(hscore[A], hscore[C], .., hscore[Y]) 
  lcrType 8 residues[ argmax(hscore[A], hscore[C], .., hscore[Y])   

  if (hscoreMAX >=Threshold) 
    S 8 mask(S, lcrType, from, to) 

while ((hscoreMAX>=Threshold) 
 
function detectBias(Sequence: S, Residue: r) 
  (maxscore, from, to) 8 alignSmithWaterman(S, poly-residue) 
  return (maxscore, from, to) 
 
function mask(Sequence: S, Residue: lcrType, Start: from, End: to) 
  for pos in  (from .. to) 
    if (S[pos] equals lcrType) 
      S[pos] 8 neutral 
  return (S) 
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executed in 20*N threads on the GPU card's cores. Each set 
of 20 threads, corresponds to the CAST execution over the 
homopolymers for each one of the N sequences processed in 
parallel, thus making efficient use of the GPU card¶V�
processing elements. The data resulting from each set of 
threads, will then be synchronized in the GPU's shared 
memory and used by thread 0 of the set to calculate the 
current iteration's LCR.  

Upon kernel completion - all threads terminated - the host 
CPU will regain control and mask each  sequence in the 
batch based on the kernel results. This process iterates if 
needed; the kernel is invoked on the updated batch in order to 
discover the remaining LCRs of its sequences. Next, the host 
CPU proceeds in fetch the next batch of N sequences. The 
GPU_CAST developed in this work, was programmed to 
maintain the same input/output interface as the original tool 
while ensuring it produces identical results. 

VI. EVALUATION AND RESULTS 

The proposed GPU_CAST tool was evaluated against the 
optimized multi-threaded version ± mCAST 2.0 ± proposed 
in [4]. We used a computer system having: Intel Core i7 
3960X @ 3.3GHz, 32GB RAM running Microsoft Windows 
7, equipped with a nVidia GeForce GTX690 graphic card. 
We compared the execution times, while executing the 
benchmark datasets shown in Table I.  

A. Proteomic Benchmarks 

To compare the proposed GPU-based implementation 
against the mCAST2.0 software, we used a number of 
datasets stemming from four actual protein sequence 
databases. The first database belongs to Haemophilus 
influenza bacteria (haem database) and the second consists of 
protein sequences from the malaria parasite genome 
Plasmodium falciparum (p.falciparum database). The third 
and fourth databases are a reference viral database and a 
unified protein database from NCBI used for benchmarking 
bioinformatics applications (viral.1.protein, uniprot.sprot). 
Table I lists all the test databases used during the evaluation 
process. 

B. Results 

The execution times of mCAST 2.0 and GPU_CAST are 
shown in Fig.2 expressed in milliseconds. The GPU_CAST 
when executed on the nVidia GeForce GTX690 graphic card 
shows no significant execution time differences for the 
relatively small haem and p.falciparum (plasma) datasets.  The 

GPGPU implementation paradigm shows its benefits when 
GPU_CAST executes over Viral.1.Protein (viral) and 
Uniprot.sprot datasets and speedups between 5x-11x are 
achieved. We can see that the CAST algorithm is accelerated 
when executed on the GPU card; however the speedup 
greatly depends of the dataset. For example the execution 
time is cut in tenth for Uniprot.sprot but for the smaller haem 
dataset GPU_CAST yields similar (yet slower) execution 
times as mCAST 2.0.  

While GPU_CAST is proven to be more efficient for 
executing CAST algorithm over large datasets, a comparison 
between Fig.2's GPU_CAST and kernel columns, shows that 
a significant amount of time is consumed in tasks different 
that actually performing CAST (shown by the kernel 
column). As such, further analysis is required for identifying 
these overheads. 

Executing software programs directly on the GPU card, 
the data has to be present on the GPU memory, as already 
discussed in Section III. As such, the data needed for 
calculating CAST - the information of the sequences in the 
dataset and the substitution matrix - must be transferred to the 
GPU memory before the kernel of CAST executes, and move 
the results from the GPU back to the host memory as well. 
As such, memory transfers between the CPU and the GPU 
have to be evaluated as potential performance bottlenecks, in 
order to determine their actual impact on GPU_CAST 
execution times.  Fig.3 shows the time consumed in CUDA 
API-related tasks such as memory transfers and kernel 
execution. 

Memory transfer overheads sum up to 51% of the CUDA 
tasks for haem, 31% for viral.1.protein, and  29% for 
Uniprot.sprot dataset respectively, while remain other 10% 
for plasma dataset. We can understand that the memory 

TABLE I.  PROTEIN SEQUENCE DATASETS  

Dataset Name # of sequences Average length 
%  

LCRs* 

Haem 1,743 305.1 
7.97 

(0.64) 

p.falciparum 

(plasma) 
5,491 755.9 

72.81 

(14.42) 

Viral.1.Protein 

(viral) 
101,537 274.4 

16.56 

(2.05) 

Uniprot.sprot 537,593 354.9 
33.80 

(0.16) 
*   % of sequences having at least one LCR (% of residues masked by CAST) 

 

Figure 2.  Execution Times (ms) of mCAST 2.0 and GPU_CAST (Total and Actual Kernel execution time). 

2686



 

 

overheads are greatly affected by the size and the 
characteristics of the dataset. For instance, the low memory 
overheads for plasma dataset can be justified by the fact that 
more than 70% of the sequences in the dataset have at least 
one LCR (as shown in Table I), thus CAST kernel has to 
iterate more. The dynamic nature of CAST algorithm makes 
difficult to accurately predict memory overheads, however 
the average memory overheads of all the datasets is 
calculated to be 30% which is a significant portion  of the 
overall execution time. 

VII. CONCLUSION AND FUTURE WORK 

A GPU-based implementation of a popular bioinformatics 

algorithm is presented in this paper. The results suggests that 

speedups of 5x-10x over multi-threaded versions can be 

achieved when using GPU technology for CAST algorithm. 

Future work will explore optimization techniques for 

minimizing memory overheads which are proven to consume 

an average 30% of the execution time. 
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Figure 3.  CUDA API Times (ms) Breakdown (Memory Transfer Overheads and Kernel Execution Times) 
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