

�

Abstract² The use of GPGPU programming paradigm
(running CUDA-enabled algorithms on GPU cards) in
Bioinformatics showed promising results [1]. As such a similar
approach can be used to speedup other algorithms such as
CAST, a popular tool used for masking low-complexity regions
(LCRs) in protein sequences [2] with increased sensitivity. We
developed and implemented a CUDA-enabled version
(GPU_CAST) of the multi-threaded version of CAST software
first presented in [3] and optimized in [4]. The proposed
software implementation uses the nVIDIA CUDA libraries and
the GPGPU programming paradigm to take advantage of the
inherent parallel characteristics of the CAST algorithm to
execute the calculations on the GPU card of the host computer
system. The GPU-based implementation presented in this work,
is compared against the multi-threaded, multi-core optimized
version of CAST [4] and yielded speedups of 5x-10x for large
protein sequence datasets.

I. INTRODUCTION

Proteomics ± the study of the proteins of biological
species (including human) ± has revolutionized the way
biological research is currently performed. As huge amounts
of sequence data are currently being produced worldwide at
an increasing pace, extensive downstream computational
analysis is required. Typical computational pipelines for
proteomics feature a computationally intensive sequence
comparison component; this is justified by the empirical
observation that genes and proteins with similar sequences
usually perform similar functions. Therefore, sequence
similarity search serves for inferring functional and structural
analogy for biological macromolecules [5] [6].

Traditionally, such complex algorithms have been
implemented on high-performance computing clusters and
multiprocessor/multicore systems [7]. There has been a
tremendous amount of effort in designing efficient systems
that can take advantage of the inherent parallelism

Agathoklis Papadopoulos is with KIOS Research Center ,Department of
Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus
(corresponding author; phone: +357-22893461; e-mail:
papadopoulos.agathoklis@ucy.ac.cy).

Ioannis Kirmitzoglou and Vasilis J. Promponas are with Bioinformatics
Research Laboratory, Department of Biological Sciences, University of
Cyprus, Nicosia, Cyprus (e-mail: vprobon@ucy.ac.cy).

Theocharis Theocharides is with KIOS Research Center ,Department of
Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus
(e-mail: ttheocharides@ucy.ac.cy).

opportunities of such algorithms; however, the specialized
nature of algorithms targeting bioinformatics, limits the
number of end-users for such platforms, thus the costs of
possible custom hardware solutions tend to be extremely
high. As such, alternative technologies that can better balance
the cost and performance constraints can be more efficient
for targeting the bioinformatics research communities.

Emerging technologies such as general purpose
computing on graphics processing units (GPGPU) are prime
candidates for improving performance of bioinformatics
applications. GPGPU implementations have been recently
developed to facilitate the BLAST (Basic Local Alignment
Search Tool) algorithm and the resulting GPU-BLAST
exhibited a 4x speedup [1]. GPGPU-enabled GPU cards are
composed of a massive number of processing elements
designed to host multiple threads that execute the same
instructions over different data in parallel. Using this
programming paradigm, normally we can accelerate data-
intensive applications, such as CAST.

In this paper, we present a first attempt to accelerate the
performance of CAST using GPGPU programming
paradigm. The GPGPU-enabled version developed in this
work is compared against the optimized multi-threaded
version of CAST presented in earlier work in order to
evaluate the proposed implementation. The paper is
partitioned as follows: Section II provides background
information on CAST algorithm; Sections III and IV discuss
the GPGPU programming paradigm and related work in
bioinformatics; Section V and VI describe and evaluate
respectively the proposed implementation, and Section VII
concludes the paper.

II. BACKGROUND

Comparison of biological macromolecular sequences (i.e.
protein, DNA, RNA) is a key computational task for the
characterization of genes and proteins massively identified
through genome projects. This process is facilitated by rapid
and sensitive tools, such as the BLAST heuristic algorithm
[8]. In principle, high sequence similarity between a query
sequence and an annotated database entry, can be used to
obtain a reliable function prediction for the query. A pitfall of
this approach may originate from the presence of LCRs,
which are source of unnaturally high scores for
compositionally biased sequence pairs that may otherwise be
biologically unrelated. A way to overcome this situation is

 GPU technology as a platform for accelerating local complexity
analysis of protein sequences

Agathoklis Papadopoulos, Student Member, IEEE, Ioannis Kirmitzoglou, Vasilis J. Promponas,
Theocharis Theocharides, Senior Member, IEEE

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 2684

Figure 1. Pseudocode for the CAST algorithm. LCR detection is

performed by iteratively comparing input S with degenerate

homopolymers (poly-residues) of the 20 naturaly occuring amino

acids. For further details see [2].

masking LCRs to significantly improve the reliability of
homology detection and the quality of function prediction.

CAST [2] is an iterative method (see Fig.1 for details) for
detecting and masking LCRs in protein sequences, resulting
in more sensitive database searches compared to SEG [9]. It
is formulated as a clever modification of the Smith-
Waterman local sequence alignment algorithm. CAST
identifies local similarities of a query sequence against
degenerate sequences corresponding to the 20 possible amino
acid homopolymers of arbitrary length without permitting for
gaps, using a suitable substitution matrix. Therefore, on top
of the detection of LCRs, CAST is also able to associate
LCRs with a specific residue type ± thus enabling selective
masking. CAST iteratively performs LCR detection and
masking steps to prevent unnecessary masking due to cross-
dependencies between amino acid residue types, provided the
detected similarities exceed an empirically defined threshold
value (T). With the use of the BLOSUM62 substitution
matrix, the optimal value T = 40 is used. In practice, a variant
of BLOSUM62 serves as the default scoring matrix: the
VFRUHV�RI�HDFK�UHVLGXH� W\SH�DJDLQVW� WKH�QHXWUDO� W\SH� µ;¶��DUH�
computed as the mean value of the amino acid substitution
scores for the respective residue type.

The algorithm shown in Fig.1 receives as input a protein
sequence, and, searches for the LCR candidates (highest
scoring segments- HSS) of each natural amino acid type. It
then selects the HSS with the maximum score, and if that
score is less than the threshold T, it ends outputting
discovered LCRs; otherwise, it replaces each occurrence of
the max scoring residue type in the highest scoring segment
UHJLRQ� ZLWK� DQ� µ;¶� �L�H�� D� QHXWUDO� DPLQR� DFLG�� DQG� LWHUDWHV�
through the updated sequence. For each discovered LCR its
residue type, the sequential position (start and end) and
computed score are reported. Further details of the algorithm
can be found in [2].

III. GPGPU PROGRAMMING PARADIGM

GPGPU (General Purpose computing on Graphic
Processing Units) is a programming model that enables the

use of the processing capabilities of the graphic cards present
in modern-day computers for executing code that
traditionally was executed on CPUs. However, the processing
elements of GPU cards are designed specifically for graphics
and thus are very restrictive in operations and programming.
As such, GPUs are only effective for problems that can be
solved using stream processing and their hardware can be
used only when using specialized API such as OpenCL and
nVidia CUDA libraries.

CUDA is the programming model developed by nVidia
and implemented by the company's graphic cards [10].
CUDA libraries give access to a virtual instruction set for
industry-standard programming languages (such as C/C++
and Fortran) that allows software developers to efficiently
map applications to be executed on GPU cards. A typical
CUDA processing flow is: a) Copy data from CPU memory
to GPU memory; 2) CPU instructs the GPU to start
processing the desired code - kernel; 3) GPU executes the
kernel code in parallel; 4) Copy the results from GPU
memory back to CPU memory.

 Using CUDA has limitations such as: unavoidable
memory transfer overheads between CPU and GPU
memories, limited memory resources per GPU core and
adjustments needed for double floating number operations.
However, provides a tool that enables developers to harness
the processing capabilities of the hundreds cores present on
nVidia's graphic cards.

IV. RELATED WORK

GPGPU programming is extensively used in
bioinformatics since the beginning [10], as most of the
applications used in the field are computationally complex
and execute of massive datasets - characteristics that allow
extensive utilization of the GPGPU programming
capabilities. While not all algorithms perform well when
executed on GPUs [11], previous attempts on developing
CUDA-enabled implementations for bioinformatics
applications showed promising results. The GPU-based
implementation of Smith-Waterman [12] showed speedups of
2x-30x over any previous implementation. GPU-BLAST [1]
showed speedups between 3x-4x for all test cases. GPU
technology used in Markov clustering showed speedups of
3x-8x [13]. The pairwise local sequence alignment program
proposed in [14] showed 10-fold speedup as well. Taking the
above non-exhaustive list into consideration, we can indeed
deduct that algorithms used in bioinformatics applications
are prime candidates for developing GPU-based versions.

V. PROPOSED IMPLEMENTATION

GPU_CAST follows a similar workflow with the
optimized multi-threaded software presented in [4]. However,
some fundamental differences do exist in order to allow
higher performance when executed on the GPU.

The sequence data are fetched in batches of predefined
size (N=50, due to GPU shared memory size limitations). For
each batch, a kernel execution is prepared by the host CPU.
Firstly, the batch's data is transferred from the main memory
to the GPU memory and stored in the GPU's global memory.
Then, the kernel is invoked. The GPU_CAST calculation is

Algorithm CAST
Input: A protein sequence S
Output: The sequence masked for LCRs

residues 8 (A, C, D, ..., Y)
hscore 8��(0, 0, 0, ...0)
from 8 0
to 8 0
neutral 8 X

do
 for each rest in residues
 (hscore[res], from, to) 8 detectBias(S, res)

 hscoreMAX 8 max(hscore[A], hscore[C], .., hscore[Y])
 lcrType 8 residues[argmax(hscore[A], hscore[C], .., hscore[Y])

 if (hscoreMAX >=Threshold)
 S 8 mask(S, lcrType, from, to)

while ((hscoreMAX>=Threshold)

function detectBias(Sequence: S, Residue: r)
 (maxscore, from, to) 8 alignSmithWaterman(S, poly-residue)
 return (maxscore, from, to)

function mask(Sequence: S, Residue: lcrType, Start: from, End: to)
 for pos in (from .. to)
 if (S[pos] equals lcrType)
 S[pos] 8 neutral
 return (S)

2685

executed in 20*N threads on the GPU card's cores. Each set
of 20 threads, corresponds to the CAST execution over the
homopolymers for each one of the N sequences processed in
parallel, thus making efficient use of the GPU card¶V�
processing elements. The data resulting from each set of
threads, will then be synchronized in the GPU's shared
memory and used by thread 0 of the set to calculate the
current iteration's LCR.

Upon kernel completion - all threads terminated - the host
CPU will regain control and mask each sequence in the
batch based on the kernel results. This process iterates if
needed; the kernel is invoked on the updated batch in order to
discover the remaining LCRs of its sequences. Next, the host
CPU proceeds in fetch the next batch of N sequences. The
GPU_CAST developed in this work, was programmed to
maintain the same input/output interface as the original tool
while ensuring it produces identical results.

VI. EVALUATION AND RESULTS

The proposed GPU_CAST tool was evaluated against the
optimized multi-threaded version ± mCAST 2.0 ± proposed
in [4]. We used a computer system having: Intel Core i7
3960X @ 3.3GHz, 32GB RAM running Microsoft Windows
7, equipped with a nVidia GeForce GTX690 graphic card.
We compared the execution times, while executing the
benchmark datasets shown in Table I.

A. Proteomic Benchmarks

To compare the proposed GPU-based implementation
against the mCAST2.0 software, we used a number of
datasets stemming from four actual protein sequence
databases. The first database belongs to Haemophilus
influenza bacteria (haem database) and the second consists of
protein sequences from the malaria parasite genome
Plasmodium falciparum (p.falciparum database). The third
and fourth databases are a reference viral database and a
unified protein database from NCBI used for benchmarking
bioinformatics applications (viral.1.protein, uniprot.sprot).
Table I lists all the test databases used during the evaluation
process.

B. Results

The execution times of mCAST 2.0 and GPU_CAST are
shown in Fig.2 expressed in milliseconds. The GPU_CAST
when executed on the nVidia GeForce GTX690 graphic card
shows no significant execution time differences for the
relatively small haem and p.falciparum (plasma) datasets. The

GPGPU implementation paradigm shows its benefits when
GPU_CAST executes over Viral.1.Protein (viral) and
Uniprot.sprot datasets and speedups between 5x-11x are
achieved. We can see that the CAST algorithm is accelerated
when executed on the GPU card; however the speedup
greatly depends of the dataset. For example the execution
time is cut in tenth for Uniprot.sprot but for the smaller haem
dataset GPU_CAST yields similar (yet slower) execution
times as mCAST 2.0.

While GPU_CAST is proven to be more efficient for
executing CAST algorithm over large datasets, a comparison
between Fig.2's GPU_CAST and kernel columns, shows that
a significant amount of time is consumed in tasks different
that actually performing CAST (shown by the kernel
column). As such, further analysis is required for identifying
these overheads.

Executing software programs directly on the GPU card,
the data has to be present on the GPU memory, as already
discussed in Section III. As such, the data needed for
calculating CAST - the information of the sequences in the
dataset and the substitution matrix - must be transferred to the
GPU memory before the kernel of CAST executes, and move
the results from the GPU back to the host memory as well.
As such, memory transfers between the CPU and the GPU
have to be evaluated as potential performance bottlenecks, in
order to determine their actual impact on GPU_CAST
execution times. Fig.3 shows the time consumed in CUDA
API-related tasks such as memory transfers and kernel
execution.

Memory transfer overheads sum up to 51% of the CUDA
tasks for haem, 31% for viral.1.protein, and 29% for
Uniprot.sprot dataset respectively, while remain other 10%
for plasma dataset. We can understand that the memory

TABLE I. PROTEIN SEQUENCE DATASETS

Dataset Name # of sequences Average length
%

LCRs*

Haem 1,743 305.1
7.97

(0.64)

p.falciparum

(plasma)
5,491 755.9

72.81

(14.42)

Viral.1.Protein

(viral)
101,537 274.4

16.56

(2.05)

Uniprot.sprot 537,593 354.9
33.80

(0.16)
* % of sequences having at least one LCR (% of residues masked by CAST)

Figure 2. Execution Times (ms) of mCAST 2.0 and GPU_CAST (Total and Actual Kernel execution time).

2686

overheads are greatly affected by the size and the
characteristics of the dataset. For instance, the low memory
overheads for plasma dataset can be justified by the fact that
more than 70% of the sequences in the dataset have at least
one LCR (as shown in Table I), thus CAST kernel has to
iterate more. The dynamic nature of CAST algorithm makes
difficult to accurately predict memory overheads, however
the average memory overheads of all the datasets is
calculated to be 30% which is a significant portion of the
overall execution time.

VII. CONCLUSION AND FUTURE WORK

A GPU-based implementation of a popular bioinformatics

algorithm is presented in this paper. The results suggests that

speedups of 5x-10x over multi-threaded versions can be

achieved when using GPU technology for CAST algorithm.

Future work will explore optimization techniques for

minimizing memory overheads which are proven to consume

an average 30% of the execution time.

ACKNOWLEDGMENTS

This work was co-funded by the European Regional

Development Fund of the European Union and the Republic

of Cyprus through the Cyprus Research Promotion

Foundation programme >�ü�ü���������@.

REFERENCES

[1] 3�� 9RX]LV� DQG� 1�� 6DKLQLGLV�� ³*38-BLAST: Using
graphics processors to accelerate protein sequence
DOLJQPHQW�´�Bioinformatics, vol. 27, pp. 182-188, 2010.

[2] V. J. Promponas et al., "CAST: an iterative algorithm
for the complexity analysis of sequence tracts,"
Bioinformatics, vol. 16, no. 10, pp. 915-922, 2000.

[3] A. Papadopoulos, V. J. Promponas, T. Theocharides,
"Towards systolic hardware acceleration for local
complexity analysis of massive genomic data," in
ACM/IEEE Great Lakes Symposium on VLSI - GLVLSI
2012, Salt Lake City, 2012.

[4] A. Papadopoulos, I. Kirmitzoglou, V. J. Promponas, T.
Theocharides, "FPGA-based hardware acceleration for
local complexity analysis of massive genomic data,"
Integration, The VLSI Journal, Elsevier, no. November,

2012.

[5] 5�� 1DLU�� %�� 5RVW�� ³6HTXHQFH� FRQVHUYHG� IRU� VXEFHOOXODU�
ORFDOL]DWLRQ�´�Protein Science, vol. 11, no. 12, pp. 2836-
2847, 2002.

[6] $��-��(QULJKW��6��YDQ�'RQJHQ��DQG�&��$��2X]RXQLV��³$Q�
efficient algorithm for large-scale detection of protein
IDPLOLHV�´�Nucleic Acids Research, vol. 30, no. 7, pp.
1575-1884, 2002.

[7] A. E. Darling, L. Carey, and W. Feng-FKXQ�� ³7KH�
GHVLJQ��LPSOHPHQWDWLRQ��DQG�HYDOXDWLRQ�RI�PSL%/$67�´�
ClusterWorld, pp. 13-15, 2003.

[8] 6��)��$OWVFKXO�HW�DO��³%DVLF�ORFDO�DOLJQPHQW�VHDUFK�WRRO�´�
Journal of Molecular Biology, vol. 215, no. 3, pp. 403-
410, 1990.

[9] -�� &�� :RRWWRQ� DQG� 6��)HGHUKHQ�� ³6WDWLVWLFV� RI� ORFDO�
complexity in amino acid sequences and sequence
GDWDEDVHV�´�Computers & Chemistry, vol. 17, no. 2, pp.
149-163, 1993.

[10] J. Nickolls, "Nvidia GPU parallel computing
architecture," in IEEE Hot Chips, IEEE Technical
Committee on Microprocessors and Microcomputers,
Stanford, 2007.

[11] J.M. Elble et al., "GPU computing with Kaczmarz's and
other iterative algorithms for linear systems," Parallel
Computing, vol. 36, no. 215-231.

[12] S. Manavski, G. Velle, "CUDA compatible GPU cards
as efficient hardware acceleratos for Smith-Waterman
sequence alignment," BMC Bioinformatics, vol. 9
(Suppl.2), no. S10, 2008.

[13] A. Bustamam, K. Burrage, N.A. Hamilton, "Fast Parallel
Markov Clustering in Bioinformatics Using Massively
Parallel Computing on GPU with CUDA and
ELLPACK-R Sparse Format," IEEE/ACM Transactions
of Computational Biology and Bioinformatics, vol. 9,
no. 3, 2012.

[14] Michael C Schatz, Cole Trapnell, Arthur L Delcher,
Amitabh Varshney, "High-throughput sequence
alignment using Graphics Processing Units," BMC
Bioinformatics, vol. 8, no. 474, 2007.

Figure 3. CUDA API Times (ms) Breakdown (Memory Transfer Overheads and Kernel Execution Times)

2687

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

