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Abstract— Hepatocellular Carcinoma (HCC) is one of the 

leading causes of death worldwide, with only a handful of 

treatments effective in unresectable HCC. Most of the clinical 

trials for HCC using new generation interventions (drug-

targeted therapies) have poor efficacy whereas just a few of 

them show some promising clinical outcomes [1]. This is 

amongst the first studies where the mode of action of some of 

the compounds extensively used in clinical trials is interrogated 

on the phosphoproteomic level, in an attempt to build 

predictive models for clinical efficacy. Signaling data are 

combined with previously published gene expression and 

clinical data within a consistent framework that identifies drug 

effects on the phosphoproteomic level and translates them to 

the gene expression level. The interrogated drugs are then 

correlated with genes differentially expressed in normal versus 

tumor tissue, and genes predictive of patient survival. Although 

the number of clinical trial results considered is small, our 

approach shows potential for discerning signaling activities that 

may help predict drug efficacy for HCC. 

I. INTRODUCTION 

HCC is one of the leading causes of death worldwide [2]. 
Traditionally, the etiology of the disease is attributed to 
genetic alterations that accumulate during chronic 
inflammation of the liver. Mutations are found in several 
important genes including p73, p53, Rb, APC, DLC-1 
(deleted in liver cancer), p16, PTEN, IGF-2, BRCA2, SOCS-
��� 6PDG�� DQG�6PDG����-catenin, c-myc, and cyclin D1 [3]. 
Moreover, as in other cancers, HCC is characterized by an 
imbalance in growth promoting signals and the MAPK 
cascade [3]. Approved treatments so far for unresectable 
HCC include sorafenib and erlotinib [4,5] that target the 
VEGFR, PDGFR and RAF kinase, and the EGFR 
respectively. However, with the average survival benefit of 
these treatments at about 3 months, it is evident that 
identification of new targets for HCC is of the utmost 
importance. 

On this front, fields like systems biology attempt to take 
advantage of the data generated by the new -omic 
technologies to identify suitable genes/proteins whose 
biological activity can be directly linked to pathological 
processes. E.g. an increasing number of studies tackle the 
complete characterization of tumors’ gene expression profiles 
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and protein content [6-8]. These approaches have succeeded 
in identifying several hundreds of genes and proteins that are 
differentially expressed in tumor vs normal tissue on the 
same patient, or genes that are differentially expressed across 
different patients and are predictive of cancer metastasis, or 
patient survival. However, applying this knowledge in drug 
discovery is not a straightforward procedure. Data must also 
be incorporated that capture the way cells function and 
respond to factors of its microenvironment (i.e. signaling 
data). Signaling data can provide the causality/directionality 
much needed in gene expression networks and uncover the 
genes that truly regulate the disease phenotype. 

The importance of intracellular signaling in HCC has 
been well established and interrogated [9], while a number of 
new drugs target kinases or receptors differentially expressed 
in disease. However, with most of these drugs (especially the 
approved ones) being highly promiscuous and their effects on 
the cell’s signaling pathways not yet studied in a systematic 
manner [10], we have yet to discover the key features that are 
predictive of drugs efficacy, reflecting also the fact that key 
aspects of this disease elude us.  

Herein, we propose a consistent framework for the 
integration of signaling, gene expression and clinical data, 
aiming at the identification of signaling pathways related to 
drug efficacy in HCC. We have put together a signaling 
dataset consisting of the phosphoproteomic response of 3 
HCC cell lines, presence of 8 drugs for unresectable HCC, 
most of which of known clinical efficacy, and attempted 
using recursive feature extraction to identify the 
phosphoproteomic signatures that are most predictive of drug 
efficacy. We, subsequently, translated our findings to the 
gene expression level, where we inferred regulatory networks 
between the identified phosphoprotein features and gene sets 
known to be implicated in HCC (either differentially 
expressed between tumor and normal tissue on the same 
patient, or differentially expressed across different patients 
and predictive of metastasis, or survival), leading to the 
identification of a subset of genes that could possibly govern 
patient survival and/or drug efficacy. The analysis presented 
herein could serve both for the identification of drug targets, 
as well as a new framework for the integration of signaling, 
gene expression and clinical data, aiming towards the holistic 
study of mechanisms implicated in drug efficacy. 

II. METHODS 

A. Data collection and normalization 

 3 HCC cell lines were interrogated (huh7, hep3b, 
hepg2), by measuring the activation level of 16 key 
SKRVSKRSURWHLQV��3��56.��$.7��65&��&5(%��,5���0(.���
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P38, IRS1), under 7 VWLPXOL��,/����7*).��+HUHJXOLQ��+(5���
Insulin (INS), HGF, ,/�� DQG� 71).�� DQG� SUHVHQFH of the 
following 8 drugs for unresectable HCC [10]: Lapatinib, 
Gefitinib, Erlotinib (EGFR inhibitors), Sorafenib (inhibitor of 
VEGFR, PDGFR and of Raf kinases C-Raf and B-Raf), 
Vandetanib (VEGFR and EGFR antagonist), Sunitinib 
(PDGFR and VEGFR kinase inhibitor), Dasatinib (multi- 
BCR/ABL and Src family kinase inhibitor), and Bortezomib 
(proteasome inhibitor). Regarding clinical trial results for 
these drgus, Lapatinib, Gefitinib, Vandetanib, Sunitinib 
shown poor outcomes [11-14], Sorafenib and Erlotinib had 
good clinical outcomes [4,5], while Dasatinib and 
Bortezomib were still under investigation [15].  

The 16 signals were chosen based on assay availability 
and quality controls performed at early stages of the 
experimental setup. The 6 stimuli were chosen to perturb 
most of the pathways observed by the 16 signals. The data 
was averaged in an ”average cancer cell type” and 
normalized using a linear regression model, that modeled the 
measured value of each signal as a linear function of the 
stimuli and inhibitor introduced, and analyte measured [16]. 

B. Identification of signaling pathways predictive of drug 

efficacy 

Recursive feature extraction (RFE) on the phospho-
proteomic data was implemented to identify the signaling 
“features” that are predictive of drug efficacy. RFE was 
implemented using the Matlab “classify()” function within a 
custom Matlab script. Data was formatted as a 2-D matrix, 
with rows corresponding to the different drugs and columns 
corresponding to observations or features (i.e. signals 
measured under the various stimuli). 5 of the 8 interrogated 
drugs were used: Lapatinib, Gefitinib, Vandetanib, Sorafenib 
and Erlotinib, while Dasatinib, Bortezomib and Sunitinib 
were omitted due to limited clinical trial outcomes, or limited 
effects on the measured phosphoproteins. The differential 
response of the drugs was used, computed as follows. For 
every feature (column), the mean response over all drugs was 
evaluated and the differential response of each drug was 
obtained by subtracting the response of that drug from the 
mean.  

Ultimately, every one of the remaining observations was 
used separately and a classifier was trained to distinguish the 
drugs between PASS and FAIL according to the clinical trial 
data available. This process was repeated as many times as 
the available drugs, every time leaving one of the drugs out 
as a test dataset to evaluate the classifiers performance. The 
average (over all drugs) performance of the classifier for each 
feature was evaluated. The features that best classify the 
drugs into PASS or FAIL are predictive of drug efficacy.  

D. Linking extracted features to significant and survival 

genes in HCC 

 The extracted features, that are predictive of drug 

efficacy, are linked to significant genes in HCC. The gene 

expression data published in [7] was obtained from GEO 

(Series GSE3500) and was used to infer a network, 

connecting the measured phosphoproteins to genes 

differentially expressed in normal versus cancer tissue 

(hereafter referred to as significant genes). To this effect the 

signaling pathway published in [10] was used to obtain the 

transcription factors (TFs) downstream the measured 

phosphoproteins (P53, CREB, FOS, JUN, ATF2, ELK1, 

STAT1, STAT3 and NFKB); subsequently, TRED  

(Transcriptional Regulatory Element Database) was used to 

obtain the target genes of the TFs and ARACNE [17] was 

used to infer a mutual information network connecting the 

target genes to the significant genes.  

 Every one of the target genes was scored based on the 

number of connections to significant genes. The 10 most 

highly scored target genes are obtained and their 

connectivity to random subsets of GSE3500 (of equal size to 

the significant genes) is examined to identify which of these 

10 target genes are most strongly correlated to the significant 

genes than to any other gene set (see Fig. 3A). In this 

manner a regulatory network is constructed from the 

phosphoprotein level, where the interrogated drugs act, 

through the affected TFs, to the gene expression level, where 

genes differentially expressed in normal versus cancer tissue 

have been identified.  

 The same procedure was also used to link the extracted 

features to survival genes in HCC. Lee et al in [6] identified 

a set of genes to be highly correlated to hazard ratios in HCC 

(hereafter refered to as survival genes). ARACNE was used 

to infer a mutual information network connecting the TFs 

target genes to the survival genes (see Fig. 3B).  

III. RESULTS 

A. Phosphoproteomic data  

 3 HCC cell lines were interrogated by measuring the 

activation level of 16 key phosphoproteins under 6 stimuli 

and presence of 8 drugs for unresectable HCC. The 

phosphoproteomic data for the average cancer cell type is 

shown in Fig. 1 (figure is placed at the end of the manuscript 

due to size). Regarding the effects of the interrogated drugs: 

Lapatinib inhibited AKT activation and partly CREB, 

0(.�� DQG� (5.��� XQGHU� 7*).. Also, inhibited CREB 

activation, MEK1, ERK12 and partly AKT under HER, 

while had no significant effects on any other pathway. 

Gefitinib had the same effects as Lapatinib under HER 

stimulation and also inhibited most signals XQGHU� 7*).��

such as AKT, CREB, MEK1, ERK12, P38, and IRS1. 

*HILWLQLE�DOVR�SDUWO\�LQKLELWHG�+63���XQGHU�,/����6RUDIHQLE�

KDG�QR�FOHDU�HIIHFWV�RQ� WKH�7*).�RU�+(5�SDWKZD\��EXW�GLG�

inhibit MEK1, P70S6, and ERK12 under HGF and HSP27 in 

WKH�,/���SDWKZD\��(UORWLQib and Vandetanib had very similar 

HIIHFWV� WR�*HILWLQLE�XQGHU�7*).�DQG�RQ�PRVW�RI� WKH�VLJQDOV�

under HER, apart from AKT (Gefitinib and Lapatinib both 

inhibited AKT under HER, while Erlotinib and Vandetanib 

left AKT unaffected). Sunitinib had no clear effects on any 

of the signals, apart from IRB under INS. Dasatinib also had 

no clear effects on the measured signals, indicating that the 

drug’s mode of action is outside the observable part of the 

pathway. Bortezomib, being a proteasome inhibitor, 

increased acWLYDWLRQ� RI� ,.�� DQG� ,56�� XQGHU� DOO� VWLPXOL�

treatments. 
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B. Phosphoproteomic features predictive of drug efficacy 

 Recursive feature extraction (RFE) on the phospho-

proteomic data was implemented to identify the “features” 

that are predictive of drug efficacy. Results are shown in 

Fig. 2. The most predictive phosphoprotein features are the 

measurement of (i) AKT XQGHU�7*).���LL��$.7 under HER, 

and (iii) ERK12 under HGF. In more detail, the feature 

extraction dictates that inhibition of (i) and (ii) is indicative 

of a drug that failed in clinical trials, while inhibition of (iii), 

of a drug that succeeded in clinical trials. (accuracy 80%). 

To ensure the significance of these results, the same analysis 

was performed after scrambling the classes (not shown 

here). 

C. Correlations between extracted features and 

significant/survival genes in HCC 

 In this step, an independent approach is used to correlate 

gene expression results of HCC to the phosphoproteomic 

signatures. The extracted phosphoprotein features, that are 

predictive of drug efficacy, are linked via their downstream 

TFs to significant and survival genes in HCC. The target 

genes of the TFs are obtained from TRED and ARACNE is 

used to infer a mutual information network connecting the 

target genes to significant and survival genes in HCC. In this 

manner the biological relevance of the extracted phospho-

protein features is validated and the mechanism by which 

they govern drug efficacy is identified. In Fig. 3 the top 

scoring target genes are shown.  

 SIAH1 and NME1, are the most highly scored genes 

(genes that are found to correlate more to the significant 

genes than to any other gene set), are both target genes of 

P53. P53 is inhibited by AKT via MDM2 [18]. This supports 

our previous finding that inhibition of AKT XQGHU�7*).�DQG�

HER is predictive of drug efficacy in HCC and identifies the 

respective mechanism: a drug that inhibits AKT will lead to 

an increase in the activity of P53, that will affect SIAH1 and 

NME1 that correlate strongly to genes differentially 

expressed in cancer versus normal tissue. Apart from P53, 

JUN is also correlated to significant genes through its target 

genes LOX and IL7R, and is too affected by AKT, 

supporting our speculation. Results shown in Fig. 3B further 

validate our findings, as the most highly scored gene 

(KLK3) is a P53 target gene.  

IV. CONCLUSION 

 Herein, we identified signaling pathways implicated in 

drug efficacy in HCC by combining signaling, gene 

expression and clinical data. A key finding of this work is 

that inhibition of AKT under TGFa (the most popular target 

for many types of cancer) may have a negative effect on 

drug efficacy, apart from the positive effect of blocking 

HCC cell proliferation [19]. Inhibition of AKT interferes 

with the p53 branch (via MDM2 [18]) that according to our 

TF analysis is a key regulator of genes differentially 

expressed in HCC. SIAH1, NME1 and KLK3 all target 

genes of p53 (and differentially expressed in HCC) are 

highly correlated to patient survival and have been identified 

before to be implicated in cancer [20, 21, 22]. The 

importance of p53 in HCC is also underlined in [20], where 

reduced p53 activity was found to induce HCC progression 

and thus have negative effects on clinical efficacy.  

 Even though our methodology is limited by the small 

number of drugs, this is amongst the first attempts to build a 

framework for integrating signaling, gene expression and 

clinical data in order to build strong hypotheses for drug 

targets in HCC and other diseases. 

 
Figure 2. Classification accuracy for different phosphoprotein features. The 

y-axis corresponds to classification accuracy (out of 1.0), the x-axis 

corresponds to the different phosphoprotein features. 

 
Figure 3. Correlation of the TFs’ target genes to (A) significant in HCC and 

(B) survival genes. The y-axis corresponds to the number of connections to 

(A) significant in HCC or (B) survival genes, the x-axis corresponds to the 

most highly connected target genes.  
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Figure 1. Phosphoproteomic data of the average cancer cell type under 8 stimuli (including the no-stimuli treatment) and 9 drugs for unresectable HCC 

(including the no-drug treatment). The time course of the 16 phosphoprotein signals from the unstimulated state to the average early response is illustrated. 

The rows correspond to the 16 signals, the main colunms to the 8 stimuli treatments and the 9 subcolunms to the drugs. In each subplot, the first point shows 

the unstimulated activity of the respective signal (zero time point) and the second point shows the normalized value of the signal 5+25 minutes after 

stimulation. 
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