
Camera-based System for Contactless Monitoring of Respiration

Marek Bartula, Timo Tigges, and Jens Muehlsteff

Abstract— Reliable, remote measurement of respiration rate
is still an unmet need in clinical and home settings. Although the
predictive power of respiratory rate for a patient’s health status
is well-known, this vital sign is often measured inaccurately or
not at all. In this paper we propose a camera-based monitoring
system to reliably measure respiration rate without any body
contact. A computationally efficient algorithm to extract raw
breathing signals from the video stream has been developed
and implemented. Additionally, a camera offers an easy access
to motion information in the analyzed scenes, which signifi-
cantly improves subsequent breath-to-breath classification. The
performance of the sensor system was evaluated using data
acquired with healthy volunteers, as well as with a mechanical
phantom, under laboratory conditions covering a large range
of challenging measurement situations.

I. INTRODUCTION

Monitoring of respiration is important in many applica-

tions, since deviations in breathing rate or shallowness of

breath are an important sign of a person’s health. Respiratory

disorders are early indicators of physiological deterioration.

Despite these facts, it is one of the most seldom measured

vital sign in the general ward [1]. Breathing is also a

highly relevant sleep parameter, providing insight into the

state of relaxation, sleep depth, apnea and snoring events.

Accurate monitoring of respiratory rhythm can improve the

effectiveness of paced breathing exercises.

Nowadays, established clinical methods for measuring

respiration require a sensing device to be attached to the

body [2]. Three main approaches of contact measurement

focus on (a) nasal/oral air-flow (tidal volume), (b) thoracic

impedance changes and (c) chest movement or change of

its volume (respiratory effort). The first one requires a

mask connected to an air volume measuring device, like

a spirometer, or a sensor to be placed in the stream of

inhaled/exhaled air. Method (b) usually requires the attach-

ment of electrodes to the skin in the chest area, while for

(c) a strain gauge or inductive belt is applied around the

chest/abdomen. These methods could compromise the com-

fort of the monitored person since sensors are inconvenient to

apply or wear, and in most cases are connected with cables.

While this might be of little relevance in scenarios such as

intensive care, body-attached devices are preferably avoided

in applications like sleep monitoring or ambient assisted

living.

This unmet need for unobtrusive monitoring of respiratory

effort has triggered research in contactless solutions. Several
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methodologies have been investigated in the past, which are

usually based on Doppler radar [3], acoustic or imaging

sensors. Unlike microphones and radars, cameras provide

a 2-dimensional signal with additional context information

on the measurement process, relevant for interpretation of

the extracted vital signs. This is of particular importance in

unsupervised monitoring scenarios. Cameras allow for an

automatic selection of region of interest and detection of

non-respiratory events such as head or limb movements.

II. CAMERA-BASED METHODS

Many attempts have been already made to use imaging

sensors for remote measurement of respiration. Thermal

infra-red cameras can detect temperature differences and

changes in front of the nose/mouth region [4], [5]. However,

this method is constrained to situations where the subject’s

face is visible. Cost of the hardware can be a limiting factor

as well. Likewise, time-of-flight (ToF) cameras [6], while

allowing to use depth sensing, are an expensive option.

Depth reconstruction can be also achieved using multiple

cameras (stereo principle) equipped with conventional sen-

sors. However, it involves additional hardware and complex

algorithms with limited depth resolution. In contrast, single

visible and/or near infra-red (NIR) light camera is much more

cost effective.

Respiration signals are usually extracted from video by

detection of changes in the image caused by chest/abdomen

movements, or direct estimation of that motion. A simple

approach consists of subtracting consecutive frames and

using the sum of pixels in the difference image as the

respiratory signal [7], which is a measure of change in these

consecutive images, rather than the actual motion. Its perfor-

mance strongly depends on the pattern of clothing. It also

suffers from noise or other variations in the image, i.e. global

light levels, which can significantly distort the signal. The

main problem lies in the fact that it does not distinguish in-

haling from exhaling, and thus requires heuristically designed

post-processing to reconstruct the respiration waveform. Use

of more sophisticated algorithms to track respiratory effort,

such as movement detection from optical flow [8], improves

noise robustness, but still does not reconstruct the respiratory

signal and requires high processing power.

Another camera-based solution depends on the projection

of light patterns to enhance visibility of subtle respiratory

motion [9], but the illumination source needs to be at a

different angle with respect to the monitored person than the

camera. This eliminates the possibility of having a single

device solution which might be a limiting factor for many

applications.
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Alternative approaches focus on tracking a group of fea-

ture points; however, it is not guaranteed that a sufficient

number of those points can be found. Attaching markers to

the monitored subject provides artificial characteristic points

that can be easily tracked. On the other hand, an ideal

solution should not require any cumbersome preparation

before a measurement, as it may limit its applicability.

Motion due to respiration can be very subtle, with max-

imum excursion of a few millimeters [10]. We have found

in our initial experiments that classical motion estimators,

such as previously proposed optical flow [11], do not provide

sufficient sensitivity to reliably detect those movements. The

goal of this work was to develop an algorithm that combines

low complexity and high sensitivity, utilizing a single off-

the-shelf camera, without on-body markers or projection of

light patterns. It should provide directionality information,

in terms of rising ’inhale’ and falling ’exhale’ signal, for a

real-time reconstruction of breathing wave without excessive

post-processing and noticeable delay.

III. PROPOSED ALGORITHM

We present a robust breathing monitoring system that

allows a cost effective implementation. It consists of a

camera and image processing algorithm. We have used a

monochrome camera for both visible and/or near infra-red

(NIR) light imaging. The luminance channel obtained from

the conversion of RGB input may be used as well. The block

diagram of our algorithm is presented in Fig. 1.

A. Extraction of raw respiratory signal

In the first step, a one-dimensional representation (profile)

of the image, or selected region of interest (ROI), is obtained

through a projection-like transformation onto a vertical axis.

This is based on the observation that natural person-camera

geometries show the strongest motion component along

that axis. Therefore, it is most of the time sufficient, and

computationally least complicated, to build a vertical profile

applying the operation along rows of the frame. This can

be any function that captures/preserves information about

texture, edges or any other detail present in the image.

In the current implementation, a combination of mean and

standard deviation is used. An example video frame with the

corresponding vertical profile is shown in Fig. 2.

The obtained 1D vector is high-pass filtered to enhance

edges and to make the system relatively insensitive to

changes of global illumination. Final steps in profile pre-

processing consist of spatial and temporal low-pass filtering

to suppress the noise.

In the next stage, breathing motion is efficiently obtained

by correlating the 1D vector of a current image with that

of an earlier image. Unlike typical projection-based mo-

tion estimators [12], we use cross-correlation rather than

phase correlation. This is motivated by the fact that instead

of an absolute translatory shift of a rigid object, we are

trying to detect deformations and displacements caused by

chest expansion during breathing. These may have different

appearance depending on multiple factors, e.g. position of

���������

	
�����
��

�
�����

���������

������

	���������������

�������������
������

�

�����
���������������������������

�������

�����
���

������������

������ �
�����

��������������

!��� �
��������

�����

�"�
������

!
������������


!
�#�����#����

�����
���

Fig. 1. Block diagram of the proposed algorithm
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Fig. 2. Example video frame with the corresponding vertical profile

the person, camera’s distance and angle of view. Therefore,

extracted shift indicates a relative change during the breath-

ing cycle and has no absolute meaning.
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Cross-correlation (r) of the current (pc) and previous (pp)

profiles is calculated by calculating the inverse Fourier trans-

form
(

F
−1

)

of the product of Fourier transformed current

(Pc) and complex conjugate of previous
(

P ∗

p

)

profiles

r = F
−1

(

PcP
∗

p

)

where Pc = F (pc) and Pp = F (pp). To suppress

boundary effects, a Hann window is applied prior to the

Fourier transform.

If we determine the maximum correlation of the shifted 1D

vector of the current image with that of the previous image,

the obtained translatory offset signal is the derivative of the

(chest) position. Since the subtle respiration might appear as

a sub-pixel motion, the exact peak location of the correlation

function is determined by interpolation, using the samples

from its direct neighborhood. At last, the position signal is

obtained after numerical integration in the time domain.

B. Non-respiratory (global) motion detection

Given the high sensitivity of our algorithm to subtle

breathing motion, it can be easily disturbed by large mag-

nitude motion. This includes a person changing position or

waving his/her arms in front of the chest. In such situations

it is desired to detect and flag those time segments, to avoid

extraction of the rate from a signal that consists of artefacts.

The motion detector is based on a flow algorithm, with

meander scan and adaptive thresholding. One binary decision

per image block is taken, labeling it as “moving” (’1’) or

“stationary” (’0’). The final motion signal is a ratio of blocks

labeled as “moving” to the total number of blocks in the ROI.

C. Classification of individual breaths

The video processing part of the system has two outputs:

the raw breathing signal and the global motion signal. Both

extracted signals are used as input for a binary classifier of

the raw breathing signal, to take into account only those

periods with reliable breathing cycles. The implemented

approach is based on a breath-to-breath classification scheme

and consist of six essential steps as shown in Fig. 1.

First, the global motion signal is used to identify and

exclude intervals containing non-respiratory motion. High

and low frequency noise are filtered out by a bandpass

filter before further processing, followed by a segmentation

procedure which extracts single breath candidates. For each

breath candidate, a feature vector is derived and presented

to a previously trained decision tree, which assigns one of

the two labels: ‘good’ or ‘bad’. Fig. 3 shows an example

sequence of the single-breath classification results, where

green shading indicates that a breath candidate is labeled

as ‘good’, and red shading indicates label ‘bad’.

Only those segments of the signal identified as ‘good’ are

used in rate calculations. This is the major advantage of the

rate extraction algorithm in comparison to other frequency

estimation methods like e.g. periodograms.

The classification algorithms are trained to maximize the

decision accuracy by finding the right label for each breath

candidate regardless of its true class. This implies identical
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Fig. 3. Example of the classification

misclassification costs of false positive and false negative

classification. However, it is assumed that with respect to

the subsequent rate calculation, it is worse to include a mis-

classified ‘bad’ breath candidate, rather than not including a

‘good’ one. When information from the order of appearance

of breath candidates is utilized in the post-processing stage,

the inequality in misclassification costs is taken into account

by changing selected ‘good’ labels into ‘bad’, but not vice

versa. This leads to a significant increase in the classification

precision and thus in the precision of calculated rates.

IV. EXPERIMENTAL RESULTS

A. Set-up

During our experiments we used a custom-made data

acquisition system that allows for synchronous recording

of uncompressed video frames and reference signals (see

Fig. 4). Recorded monochrome sequences had a resolution

of 752x480 or 768x576 pixels and a frame rate of 20 Hz.

We have conducted two different sets of tests. In the

first one, a mechanical breathing phantom was used for the

purpose of having a well-defined setup. It was excited with a

sinusoidal signal with a frequency ranging from 0.1 to 1 Hz

(6-60 bpm). To assess the impact of the camera position

and orientation, we recorded the phantom from five positions

around the bed, each at three different heights. Additionally,

we explored the effects of various lighting conditions, pat-

terns and artificially induced shadows, as well as motion in

the scene. In total, approximately 9800 breathing cycles were

acquired.
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Fig. 4. Overview of the acquisition system
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Fig. 5. Respiratory patterns simulated during video recordings

In the second test, five healthy subjects (1 female, 4 male)

were asked to follow a sequence of different breathing

patterns, orchestrated by a supervisor, while lying down in

a bed. During the experiments subjects were covered with

a blanket. Thoracic inductance plethysmography served as

the reference signal for the subject’s breathing effort. The

experimental protocol is shown in Fig. 5.

B. Performance

In the experiment with breathing phantom, 7 features

extracted from the raw breathing signal were used, achieving

accuracy and precision of approx. 90 %. Post-processing

strategies have significantly improved the precision, to a level

of 95 %. The correlation coefficient between reference and

video-based estimation was R = 0.97 (Fig. 6).

For the recordings of human subjects, using on average

8 features gave the accuracy and precision of approx. 85 %.

Again, post-processing significantly enhanced performance,

with up to 89 % accuracy and 95 % precision. The correlation

coefficient was R = 0.98 (Fig. 7).

Fig. 6. Respiratory rate estimation based on phantom recordings
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Fig. 7. Respiratory rate estimation based on human subject recordings

V. CONCLUSIONS

Camera-based monitoring is an attractive new sensing

option which offers comfortable and convenient measure-

ments of the respiration rate. Based on the experiments

with healthy volunteers in a laboratory environment and

a mechanical phantom mimicking realistic measurement

conditions, reliable and robust respiration rate extraction

using a smart sensor is feasible. The solution includes an

efficient algorithm to extract the raw breathing signal and

non-respiratory motion, followed by a classifier to include

only the valid breaths in a subsequent rate estimation. A

particular advantage of the camera solution is the access to

context information, such as global motion, which turned out

to be an essential input for the accurate classification.

The low complexity of our algorithm enables efficient real-

time implementation even on a relatively simple platform

using low-cost cameras.
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