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Abstract— The effects of systemic sclerosis (SSc) – a disease
of the connective tissue causing blood flow problems that
can require amputation of the fingers – can be observed
indirectly by imaging the capillaries at the nailfold, though
taking quantitative measures such as blood flow to diagnose
the disease and monitor its progression is not easy. Optical
flow algorithms may be applied, though without ground truth
(i.e. known blood flow) it is hard to evaluate their accuracy.

We propose an image model that generates realistic cap-
illaroscopy videos with known flow, and use this model to
quantify the effect of flow rate, cell density and contrast (among
others) on estimated flow. This resource will help researchers
to design systems that are robust under real-world conditions.

I. INTRODUCTION

Systemic sclerosis (SSc) is a disease of the connective

tissue that causes fibrosis and vascular problems leading

to digital ulcers or, in extreme cases, gangrene requiring

amputation of the fingers. Prevalence in the US adult pop-

ulation is around 250 per million, with an incidence rate of

approximately 20 new cases per million per year [1]. Due

to limited long-term clinical data, however, there are few

effective treatments.

There is, therefore, a need for systems that can diagnose

disease early and measure its progression over time, for

example in response to drug treatment. Of the techniques for

assessing systemic sclerosis [2], the gold standard is nailfold

capillaroscopy: taking images, through a microscope, of the

capillaries that lie flush with the skin close to the base of

the fingernail (Fig. 1a). From these images, we can measure

capillary shape, size and density; detect abnormalities and

haemorrhages; and observe blood flow in video sequences.

Capillaroscopy is attractive because it is non-invasive and

relatively cheap. Capturing high quality images for quan-

titative assessment with current systems, however, requires

training and expertise, and can be time-consuming. This lim-

its research that depends on measuring capillary properties.

A. Related Work

Properties such as vessel density and morphology can

be measured manually from capillaroscopy images [3] us-

ing software that combines individual images to create a

panorama of the whole nailbed and enhances the visual

appearance of the vessels [4], [5]. Recent software has
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(a) (b) (c)

Fig. 1. Capillaroscopy images: (a) Frame from a real capillaroscopy
sequence; (b) capillary loop from the sequence; (c) synthetic capillary
generated by our system. The capillary loops in (b) and (c) have been
rescaled to enhance contrast.

automated the measurement process for images of a given

quality [6], [7].

One measurement of interest is blood flow velocity, which

can vary rapidly over time. Though efforts have been made

to estimate the accuracy of image-based measurements with

respect to other computerized solutions [8] or between dif-

ferent image-based methods [9], such evaluations are limited

by a lack of ground truth flow values. Although using sim-

ulated images to evaluate flow estimation has recently been

proposed, sequences generated currently lack realism [10].

Image-based flow methods are typically based on one

of two paradigms: optical flow [11] exploits differential

properties of images of a dynamic scene captured close

together in time, whereas region matching methods [12] use

local search over a neighbourhood and are good for dealing

with large motions. The two approaches are complementary,

though effort has been made to combine their strengths [13].

All can be evaluated using synthetic sequences [14] or real

data, captured under highly controlled conditions with near-

perfect ground truth [15].

B. Our Objectives

Our aim is to develop a system that will offer three main

benefits to the clinic: images will be quick and easy to cap-

ture, using modern cameras with automated motion control;

blood vessels in the image will be detected, segmented and

measured automatically to give objective and quantitative

measures of abnormality; and blood flow will be measured

using image processing to provide complementary, dynamic

data. These features will allow our capillaroscopy system to

be rolled out more widely within healthcare systems.

Here we assess the efficacy of algorithms for measuring

blood flow in capillaroscopy sequences by developing a
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Fig. 2. Image synthesis process: (a) path of the vessel centre; (b) edges of the venous and arterial limb; (c) horizontal and vertical flow fields, respectively;
(d) blood cell positions along the vessel centre; (e) synthetic image, before adding noise artefacts; (f) final synthetic image. For the flow fields in (c), hue
indicates the direction of flow over the sequence (green is right/down, red is left/up) and intensity is proportional to flow rate (black indicates zero flow).

model that generates synthetic sequences of capillary blood

flow, complete with exact flow values at every pixel.1These

values can then be compared with those estimated from the

image data to quantify error in estimated flow with respect

to parameters such as flow velocity, cell density and noise.

II. METHODS

A. Generating Images

In generating an image sequence, we first define the

capillary shape and its boundaries. Healthy capillaries have a

characteristic ‘hairpin’ shape: the capillary is largely straight

with a ‘u-turn’ at its apex. We therefore generate each side

of the vessel path by tracing the locus of a point that travels

with a constant vertical velocity and a horizontal velocity

that falls to zero, plus a small random components so that

the vessel is not perfectly straight (Fig. 2a).

A capillary has two limbs: a thin, arterial limb carrying

blood from the heart; and a thicker, venous limb that carries

blood back to the heart. We generate the edges of the two

limbs using a stochastic process whereby we define the width

at the apex and allow it either to grow or shrink to a constant

value, with a small random component to model natural

variation in width along the length of the vessel (Fig. 2b).

Next, we map the vessel centre and edges to a pixel grid

where we can define a flow direction and magnitude at every

pixel. Pixels that lie between the vessel walls are assigned a

flow vector whose direction is parallel to the vessel path at its

closest point, and whose magnitude is inversely proportional

to the cross sectional area of the vessel at that point (such

that flow is conserved along the length of the vessel). Pixels

that lie just outside of the vessel wall are assigned a similar

flow vector, plus a component toward the centre of the vessel

to simulate collisions with the vessel wall. All other pixels

are assigned a zero flow vector (Fig. 2c).

Now that we have the vessel structure and flow at every

point, we can simulate the motion of individual blood cells

1Example sequences are available at the time of writing from
http://personalpages.manchester.ac.uk/staff/philip.tresadern/proj nailfold.htm

over time. To do so, we choose a fixed number of blood

cells and initialize their positions at sampled points along the

centre of the vessel. At each time instant for every blood cell,

we interpolate the flow vector from the pixel grid at the cell’s

position and apply the corresponding motion (plus a small

random motion component) to the blood cell to compute its

position at the following time step (Fig. 2d). By iterating this

process, we generate a sequence of blood cell positions for

any number of frames.

In a capillaroscopy image, an individual blood cell appears

as a dark, blurry blob that we approximate with a Gaussian in

the image. To simulate the appearance of plasma (gaps in the

blood flow), we darken the image by a random amount for

every cell. Next, we mask out pixels that lie outside the vessel

boundary, and smooth the image. We then apply an offset and

scaling to this ‘clean’ image to approximate the brightness

and contrast of a typical capillaroscopy image (Fig. 2e).

Finally, we add artefacts to the image to simulate common

causes of image degradation in capillaroscopy. First, we add

a random but spatially correlated background texture to the

image to simulate slight intensity variation in the underlying

tissue.2 We then modulate the brightness and contrast of the

image randomly over the sequence to approximate illumi-

nation changes. Last, we add a small random translation to

every image to simulate ‘shake’ that is almost unavoidable

when viewing live structures at a microscopic scale. The final

result is an image sequence that is qualitatively similar to a

real capillaroscopy sequence (Fig. 2f).

B. Estimating Flow

Given a sequence of images, real or synthetic, we can

apply optical flow methods to estimate blood flow for every

pixel at every point in time. We assume, for now, that the

images in the sequence have been registered to remove any

small translations between frames; synthetic sequences can

be generated such that this is so, whereas real sequences must

go through a registration process [16]. We also assume that

2This texture was generated using Matlab code provided by Peter Kovesi.
http://www.csse.uwa.edu.au/ pk/Research/MatlabFns/Misc/noiseonf.m
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brightness (mean intensity) and contrast (intensity variance)

are largely constant over the sequence, which also can be

achieved by design or image post-processing.

In its simplest form, optical flow assumes that a pixel

associated with a moving object will maintain its brightness

over time such that, by a first order Taylor expansion,

I(x, y, t) = I(x+ dx, y + dy, t+ dt) (1)

≈ I(x, y, t) +
∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
+

∂I

∂t
(2)

⇒ 0 ≈ Ixu+ Iyv + It, (3)

where Ix is the partial derivative ∂I/∂x (and likewise for

y and t) that can be estimated by finite differencing; the

flow vector components u = dx/dt and v = dy/dt are the

quantities we want to know.

This one equation with two unknowns has an infinite

number of solutions, since any motion parallel to an edge is

unobservable (known as the ‘aperture effect’). Though global

contraints can be applied to ensure a smoothly varying flow

field [11], we instead pool measurements over a small win-

dow (e.g. 3×3 pixels) to increase the number of constraints

on u and v. Because this is essentially a linear regression,

we can also use an eigenanalysis to identify patches where

the solution is poorly constrained and even quantify the

uncertainty in the estimated flow directions.

Estimating flow from a single pair of noisy images,

however, is error-prone. We therefore average over every

consecutive pair of frames in the sequence to obtain the

mean flow at every pixel. Alternatively, we could compute an

approximate distribution of flow over time for every pixel and

examine the properties of the distribution, such as variance

which reflects uncertainty.

C. Experiments

The purpose of creating synthetic capillaroscopy se-

quences is to assess the accuracy of the estimated blood flow

under different conditions. In particular, we want to know

when the optical flow algorithm will work well or break

down, and to quantify the effect of different parameters. We

therefore generated sequences for various values of flow rate,

cell density, brightness variation, contrast variation, transla-

tional ‘shake’ and additive Gaussian noise. For the purposes

of this quantitive study, we did not add a background texture.

To quantify error, we computed flow at every pixel in

every consecutive pair of images over the sequence. We

then computed statistics for every pixel, such as the mean

flow vector and its variance (independently in u and v) over

the sequence. Finally, we computed the mean absolute error

(MAE) in u and v between the estimated flow and the ground

truth over the whole image. All sequences contained 180
frames, equivalent to three seconds of video at 60 frames

per second (the frame rate of our hardware). Unless stated

otherwise, baseline background brightness is 120 grey levels

and contrast (i.e. the difference between the lightest and

darkest pixels) is 16 grey levels.

(a) (b)

Fig. 3. Qualitative comparison of true flow field with that estimated from
optical flow in the (a) horizontal and (b) vertical directions. Hue indicates
the direction of flow over the sequence (green is right/down, red is left/up)
and intensity is proportional to flow rate (black indicates zero flow).

(a) (b)

Fig. 4. Real image (Fig. 1) overlaid with estimated image flow in the
(a) horizontal and (b) vertical directions. Because flow magnitude is not
available for this real sequence, the colouring instead indicates the direction
of flow over the sequence: green is right/down; red is left/up. The intensity
denotes the proportion of the sequence in the given direction. The regions
of flow in the two vessels are clear.

III. RESULTS

Qualitatively, the flow in a slow-moving column of blood

was recovered well, particularly in the vertical direction in

which most of the flow took place (Fig. 3). We also applied

the algorithm to registered sets of real images, though we

have no ground truth and can present only the estimated

direction of flow; it would seem, however, that the algorithm

detected the regions of flow in the sequence (Fig. 4).

When comparing quantitative error rates with respect to

vertical flow magnitude (since this is where most flow takes

place), mean absolute error varied approximately linearly

with respect to flow rate (Fig. 5a). With respect to the number

of cells (or cell density), error increased with the number of

cells simulated (Fig. 5b).

Small random variations in brightness (Fig. 5c), ‘shake’

and added Gaussian noise (not shown) increased the error

rapidly initially before reaching a plateau of approximately

0.5 to 0.6 pixels per frame, where further increases in the

size of the variations had a much smaller effect.

Contrast variation, being a multiplicative (rather than ad-

ditive) parameter has wider influence such that error contiues

to increase linearly within the range tested (Fig. 5d).
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Fig. 5. Mean Absolute Error (MAE) in the vertical direction with respect to
(a) relative flow rate, (b) number of simulated cells, (c) brightness variation
and (d) contrast variation.

IV. DISCUSSION

Our results suggest that flow rate is the most critical

parameter that affects error. This is not surprising because

optical flow estimation algorithms consider only a small

neighbourhood around any pixel at a given time, such that

algorithms will be ineffective for flows greater than some

value. This can be addressed in two ways: increase the frame

rate of capture hardware; or apply a hierarchical pyramid

scheme whereby the flow that is estimated for each spatially

subsampled image is used to initialize flow estimation at the

next level of the pyramid.

Flow is most accurately measured in regions of high image

gradient (i.e. edges) so the cell density in the image also has

an effect: as density increases, cells overlap and obscure each

other’s boundaries. Cell density, however, is largely out of

our control which could affect the feasibility of estimating

blood flow by capillaroscopy alone. Other imaging methods

(e.g. OCT) may achieve accurate estimates, though this

makes the system more complex and expensive, and requires

a difficult data fusion step.

Random variation in brightness introduces errors in flow

estimates via the temporal derivatives, whereas variation in

contrast, translational noise (‘shake’) and Gaussian noise

affect both spatial and temporal derivatives. Brightness and

contrast changes can, however, be normalized to a large

degree by applying a global transformation to every image

that matches the brightness and contrast to a reference image

(e.g. the first) for every frame. Shake, or ‘jitter’, in the

sequence can be reduced by applying image registration [16]

to the sequence before computing optical flow.

V. CONCLUSION

We have presented a model that simulates capillaroscopy

sequences, from which we evaluate algorithms for estimating

blood flow under various conditions. The results suggest that

apparent flow rate (i.e. distance travelled per frame) has the

greatest effect, whereas the increase in error is limited for

other parameters such as brightness variation.

Though the model has promise in designing and de-

veloping algorithms for estimating flow, it may have uses

beyond this task. Because the model includes a parameter

to add random translations (that may also be correlated

over time by smoothing), we can simulate the effect of

errors in registration to evaluate the accuracy of registration

algorithms. Our model of image synthesis is also well-suited

to generating annotated training data from which optical flow

parameters can be learnt rather than prescribed [17].
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