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Abstract— The analysis of Dynamic Contrast Enhanced Mag-
netic Resonance Imaging (DCE-MRI) data of body tumors
presents several challenges. The accumulation of contrast agent
in tissues results in a temporally varying contrast in an image
series. At the same time, the body regions are subject to
potentially extensive motion mainly due to breathing, heart
beat, and peristalsis. This complicates any further automated
analysis of a DCE-MRI time series such as for tumor lesion
segmentation and volumetry. To address this problem we
propose a novel effective non-rigid registration method based
on the restoration of the joint statistics of pairs of images in
the time series. Every image in the time series is registered
to a reference one from the contrast enhanced phase. The
pairwise registration is performed with deconvolution of the
joint statistics, forcing the results back to the spatial domain
and regularizing them with Gaussian spatial smoothing. The
registration method has been validated with both a simulated
phantom as well as real datasets with improved results for both
its accuracy and efficiency.

I. INTRODUCTION

DCE-MRI plays an important role for the identification of
vital tumors in the abdominal area. The injection of a contrast
agent and its temporal accumulation in tissues can highlight
anatomic and pathologic structures aiding a medical doctor in
lesion identification. The intensity and contrast in DCE-MRI
time series varies significantly along time. These variations
hold information regarding the state of the vessel system such
as perfusion and permeability. The interpretation of the data
with sufficient precision to provide information about disease
progression and treatment requires automated analysis. This
is however hampered by temporal contrast change and by
complex physiological movements that may introduce spatial
misregistration along time.

Some of the most commonly used methods for DCE-MRI
registration are based on B-splines [1] as well as on the
Demons method [2] combined with a distance measure such
as the mutual information (MI) [3], [4]. However, the MI
being only a scalar quantity under-constrains the registration.
That makes MI based methods computationally demanding
for volumetric datasets and in practice must be combined
with considerable spatial subsampling or multiresolution [1],
[3], [4].

We propose a novel systematic non-rigid registration
method that is based on the deconvolution of the joint
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statistics of pairs of images in a time series. The regis-
tration operates in full image resolution with very limited
time requirements. The spatial misregistration is assumed
to cause dispersion on the joint statistics [5]. The problem
is approached as a statistical deconvolution one, where the
effect of the dispersion is represented as a convolution
of the statistics and is restored with Wiener filtering [6].
The deconvolved statistics are indexed and enforced to the
registration between the images to obtain an initial spatial
transformation. Then, the transformation is regularized for
smoothness. The proposed method is iterative and has been
validated on a variable contrast extension of the 3D Shepp-
Logan simulated phantom [7] and 3D+time real datasets of
the human liver, lung, and prostate.

II. METHOD

The method developed takes as reference a frame manually
selected from the contrast enhanced phase of DCE-MRI.
The method first performs rigid and affine registration steps
in cascade and uses the result to initialize the subsequent
non-rigid registration step. In this work the dispersion of
the distributions of the joint statistics is assumed to result
from Gaussian smoothing, which is deconvolved with Wiener
filtering. This assumes a smoothness of anatomy in space
and a larger size for anatomic structures compared to the
extent of the motion. The non-rigid registration deconvolves
the joint statistics with a Wiener filter to estimate spatial
transformations iteratively, k = 0, ...,K − 1 for a total of K
iterations. It also regularizes the transformations with spatial
smoothing.

A. Registration of the DCE-MRI time series

The entire DCE-MRI time series has been registered to a
reference image selected from the contrast enhanced phase
where the lesion contrast and the overall contrast is higher.

A pairwise registration is between a reference image
Iref (x) and a moving image Imov(x) taken from a time
series of images It with t = 0, ..., τ − 1, where τ is the
total number of images in the time series and x = (x, y, z)
are the spatial coordinates. A spatial transformation T =
(ux, uy, uz) from Iref to Imov is estimated to obtain a
registered image Ireg = Imov(T−1(x)). The problem of the
non-rigid registration of pairs of images in a time series
is formulated with two priors. The first results from the
deconvolution of the joint intensity statistics with the Wiener
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filter. The second results from the spatial regularization of
the registration with a Gaussian filter. The registration can
accommodate a temporally variable contrast. The method
allows the registration over a limited Region Of Interest
(ROI) of the image for which the contrast is intended for.

B. Wiener deconvolution of joint intensity statistics

Two images Iref and Imov under assumed perfect align-
ment give rise to the joint histogram Hideal. The joint
statistics H0 of the misregistered images are considered to
result from the convolution of Hideal with a 2D Gaussian
filter Gi,j to give H0 = Hideal ∗ Gi,j , where ∗ is the
convolution and i, j signify the dynamic ranges of Iref and
Imov , respectively. The statistics H0 are deconvolved with
a 2D Wiener filter fi,j =

Gi,j

||Gi,j ||22+ε
, where ε assumes a

small value. The filter fi,j is convolved with H0 to obtain an
estimate of the deconvolved statistics as Hrest = H0 ∗ fi,j .
The images in Fig. 1c and 1d are the joint statistics of images
in Fig. 1a and 1b at different iterations before the Wiener
deconvolution. The deconvolved statistics are used as a prior
that constrains the estimation of the registration.

(a) Reference (b) Moving (c) Iteration 0 (d) Iteration 11
Fig. 1: Joint statistics for initial images (a) and (b) before
Wiener deconvolution at the initial iteration (c) and after 11
iterations (d). The joint statistics become sharper.

C. Enforcement of priors to the pairwise registration

A graph R = (V,E) is constructed. Each of the vertices
in V corresponds to a voxel in the image. The edges in E
are connecting each node corresponding to a voxel in Iref to
nodes of voxels in spatial neighborhood N in Imov . In Imov
we consider the 6-connected neighborhood around every
voxel x, N(x) = x+∆x, where ∆x = (±dx,±dy,±dz) and
dx, dy, dz are the sizes of a voxel along different axes. The
voxel anisotropy is accounted for by using an edge weight
wd = 1/(d+ 1) for a distance d.

The intensities of the edge between Iref (x) and Imov(x +
∆x) form an index for the restored joint histogram to retrieve
the second edge weight wH = Hrest(Iref (x), Imov(x+∆x)).
The product wtot(x + ∆x), wtot = wd · wH gives the total
weight of an edge. The linear expectation of the direction
of the edges connecting x over their weights gives an
initial displacement T′′(x) for voxel x. At every iteration
the displacements over the entire image give an initial
transformation

T′′k(x) = Ewtot(x+∆x) =
ΣNwtot(x + ∆x)(x + ∆x)

ΣNwtot(x + ∆x)
, (1)

that is accumulated to obtain T′k = T′k−1 + T′′k . The second
prior is the spatial regularization. To regularize the estimation
of the transformation T′k, the gradient magnitude ||∇T′k||2

over the image is penalized, that is equivalent to applying
a 3D Gaussian filter G(x;σS) to the spatial transformation
T′k at every iteration that gives the estimate of the total
transformation as Tk = T′k ∗G(x;σS).

D. Order of computational complexity

The computational cost of pairwise DCE-MRI registration
depends on: m-effective size for each of the image dimen-
sions, n-size of a neighborhood window |N |, p-spatial sub-
sampling factor between nodes, and of the spatial Gaussian
smoothing σS . The presented method even when operating
in full spatial resolution significantly expedites the non-
rigid registration task compared with the B-Splines [4]. In
the proposed method the pairwise registration requires the
computation and deconvolution of the joint statistics and
the spatial smoothing only once per iteration. This is in
contrast to the B-Splines method extended with the MI
that requires the joint statistics estimation and the spatial
smoothing |N | times for each of the (m/p)3 nodes in
every iteration to cover an image. The complexity of the
proposed method is O(m3[n + σS ]), while that of the B-
Splines method is O(m3(m/p)3[n + nσS ]). The cost of
the Demons method extended with MI can be even higher
than that of the B-Splines depending on the levels l of
the multiresolution pyramids it is often combined with.
Assuming that the image widths are halved at every level,

the cost is O
(
m3

(∑l′=l−1
l′=0

(
m
2l′

)3)
[n+ nσS ]

)
.

III. EXPERIMENTS AND RESULTS

A. Implementation and end condition of iterations

The method has been implemented in C++. To improve
performance the Wiener filter for the statistics has been
implemented separably and is approximated as fi,j =

Gi

||Gi||22+ε
∗ Gj

||Gj ||22+ε
assuming that Gi,j = Gi ∗ Gj , where

Gi and Gj are 1D Gaussian filters. The standard deviation
σW for the Wiener filter has been set to 2% of the dynamic
range and the value of ε to 0.1. The spatial regularization
of the transformation has been performed using the ITK
[8] implementation of the 3D recursive separable Gaussian
filter on the components of the displacement ux, uy and uz
along the three axes. Both the pairwise non-rigid registration
method developed in this work as well as the pairwise
non-rigid B-Splines method process 3D+time images and
are preceded by the rigid and affine registration methods
provided by ITK [8].

The optimization iteratively alternates between the con-
straints arising from the statistical restoration and from the
spatial regularization. The convergence of the registration is
evaluated at every iteration. It uses the average L2 norm of
the spatial transformation ||Tk||. The stop condition s of the
iterations is s = ||Tk||

||T0|| − 1 < −1%. A maximum number
smax of iterations is also enforced.

B. Validation methodology

To evaluate the quality of the registration obtained for real
datasets with the method presented, the voxelwise Sum of

2612



Absolute Differences SAD =
∑t=τ−1
t=0

∑
x |It+1(x)−It(x)|

has been calculated within a ROI between consecutive frames
before and after the registration. The SAD for the phantom
has been calculated between the registered and the ground
truth images. The percent improvement (Imp) of SAD is
defined as Imp% =

SADbef−SADaft

SADbef
100%, where SADbef

and SADaft represent the SAD calculated before and after
the registration, respectively. The method has been compared
with the pairwise B-Splines based non-rigid registration
method combined with MI as provided by ITK.

(a) Reference (b) ROI mask (c) Before (d) After
Fig. 2: A 2D section from the 3D registration of simulated
volumetric phantom images in an ROI. (c) and (d) are
the checkerboard compositions interleaving Iref and Imov
before and after the registration, respectively.

C. Datasets description and registration results

A validation data for the proposed method has been
applied to two images of a multicontrast simulation with
the 3D Shepp-Logan phantom with a full resolution of
128×128×128 pixels as displayed in Fig. 2 which shows
an obvious improvement in registration. The phantom has
been modified to simulate the contrast enhancement and a
sinusoidal function over the spatial image coordinates in
all dimensions has been applied to simulate a non-rigid
transformation. The value of σS has been set to 6 voxels.
The registration has been performed in a manually specified
ROI of Fig. 2b. After 8 iterations it can be seen in Fig. 2d that
the phantom is properly registered. The registration between
Iref and Imov gives an Imp% of about 68%. A performance
comparison with the B-Splines method is shown in Table I.

The patient data in this study include liver datasets from
2 patients [9] and lung datasets from 2 patients. All patient
datasets were acquired in regular free breathing with an 1.5T
MRI scanner (Sonata, Siemens/Erlangen) using a 3D Flash
pulse sequence. The images at every time point consist of 20
slices of 128×128 pixels with an in-plane spacing of 3.1mm
and a slice thickness of 3.5mm. The scan lasted a total of
6min and produced a time series of 72 images with a time
resolution of 5sec. The value of σS has been set to 10mm
for all axes and for all datasets.

Prostate datasets from 4 patients were also considered
and analyzed. They have been acquired with a 3T MRI
scanner (TIM-Trio, Siemens/Erlangen) using a 3D Flash
pulse sequence. The images at every time point consist of 28
slices of 192×150 pixels with an in-plane spacing of 1.8mm
and a slice thickness of 3.5mm. The scan lasted a total of
about 7min and produced a time series of 50 images with
a time resolution of 8sec. The value of σS has been set to
3mm for all axes and for all prostate datasets.

The manually specified ROI for the examples in Fig. 3
are shown in Fig. 3d and 3j. As visual evaluation for the

(a) Reference (b) Moving (c) Registered

(d) ROI mask (e) Before (f) After

(g) Reference (h) Moving (i) Registered

(j) ROI mask (k) Before (l) After

Fig. 3: A coronal section from the volumetric registration of
a real dataset of a liver (a)-(f) and of a lung (g)-(l). In (f)
and (l) the arrow points to a registration improvement.

liver and lungs datasets, a 1D axial window of 15 pixels
has been considered. This window is intended to produce
kymograms to track the motion of the liver or the lung lesion
due to breathing. The colors in the kymograms represent the
intensity of pixels showing a separation between the different
tissue types. The kymograms of the first example in Fig. 3
are shown in Fig. 4c and 4d and show that the movement
due to breathing has been significantly compensated by the
registration. The average intensity over time of an ROI which
contains only a single lesion has also been calculated as
shown in Fig. 4b. Some artifacts non related to motion are
still present after the registration. The complete evaluation
protocol has been applied to all datasets giving the results
shown in Table I.

The tests were performed on a workstation with an In-
tel Core2 Duo 3.0 GHz CPU, 8GB of RAM. Our initial
implementation of the method for a typical image shown
in Fig. 3 achieved more than 230% speedup and had a
260% lower working memory requirement compared to the
B-Splines method as shown in Table I. It also achieved
improvements in resolution by operating in full image res-
olution as opposed to the B-Spline method that in practice
requires subsampling. The B-Splines method tested operates
in a grid of size 20×20×20, which implies a resolution of
20×20×3.5mm3 = 1400mm3 as a subsampling in liver
and lung datasets. Our method operates in full spatial res-
olution of 3.1×3.1×3.5mm3 = 34.2mm3, which provides
a resolution 41 times higher. The values of Imp% of the
proposed method compared to those of the B-Splines method
are shown in Table I.
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Datasets Method Imp (%) Resol.
(voxels)

Exec.
time

Memory
Space

Phantom B-Splines 66.42% 1/262 19min 730MB
Proposed 68.54% 1 8min 450MB

Liver 1 B-Splines 1.75% 1/41 ∼14hrs 650MB
Proposed 30.81% 1 ∼ 6hrs 250MB

Liver 2 B-Splines 34.20% 1/41 ∼15hrs 650MB
Proposed 37.64% 1 ∼ 5hrs 250MB

Lung 1 B-Splines 27.18% 1/41 ∼11hrs 650MB
Proposed 33.21% 1 ∼ 5hrs 250MB

Lung 2 B-Splines 28.86% 1/41 ∼6hrs 650MB
Proposed 28.51% 1 ∼ 4hrs 250MB

Prostate 1 B-Splines 27.96% 1/72 ∼11hrs 870MB
Proposed 29.32% 1 ∼ 5hrs 300MB

Prostate 2 B-Splines 21.10% 1/72 ∼11hrs 870MB
Proposed 21.19% 1 ∼ 5hrs 300MB

Prostate 3 B-Splines 21.67% 1/72 ∼11hrs 870MB
Proposed 17.71% 1 ∼ 5hrs 300MB

Prostate 4 B-Splines 18.84% 1/72 ∼11hrs 870MB
Proposed 19.73% 1 ∼ 5hrs 300MB

TABLE I: Comparison of the proposed method with the B-
Splines.

(a) (b)

(c) Before (d) After
Fig. 4: In (b) are the time-intensity curves before and after
the registration over a lesion ROI. In (c) and (d) are the
kymograms resulting from a 1D axial window before and
after registration.

IV. SUMMARY AND DISCUSSION

The time interval between consecutive images from the
real time series of 5 to 8sec is larger than both the breathing
cycle as well as the heart beat rate that makes temporal
adjacency insignificant. Thus, the pairwise registration of the
entire real time series was performed by taking as a reference
an image manually selected from the contrast enhanced phase
that significantly improves the co-registration. The rigid and
affine pre-processing registrations mainly account for the
translational component of the breathing motion. The impor-
tant parameters of the non-rigid registration are the σW of the
Wiener filter and σS of the spatial regularization. The value
of σW must be smaller than the distance between adjacent
tissue distributions in the joint statistics. The value of σS
must be smaller than the spatial extent of the displacement
field. As shown analytically and experimentally in Table I
the order of computational complexity is lower than that
of the B-Splines based method. The overall speedup is on

average approximately 2 to 3 times. That makes the non-rigid
registration of a DCE-MRI time series effective and practical
and enables the dense spatial registration in a manner robust
against contrast changes and anisotropy.

The total time performance of the methods include the
common cost of the rigid and affine pre-processing steps.
The method developed significantly improves the efficiency
and accuracy of non-rigid registration of DCE-MRI datasets
while operating densely in full spatial resolution. The method
is based on a systematic model of the misregistration and
its removal. It has accurately compensated the motion in a
phantom as well as in several representative DCE-MRI real
datasets. The non-rigid registration can accommodate both
same as well as variable image contrasts. It is iterative and
results in an effective deconvolution of the joint statistics
that only requires a single estimation of the joint statistics
and the spatial smoothing per iteration. The registration
method does not involve the MI distance measure. The MI
allows more degrees of freedom than necessary and leads to
a significantly higher computational cost. The performance
of this method as well as of all methods based on image
statistics is improved if a spatial ROI of meaningful contrast
is considered.

Another advantage of the method is that it is robust to the
anisotropic resolution present in the clinical imaging data of
this study. The robustness of the method has also been shown
by evaluating it with datasets from a variety of anatomic
regions including liver, lung, and prostate. The resulting time
activity curve can also provide pharmacokinetic information.
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