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Abstract— Diagnosis and focal treatment of prostate cancer,
the most prevalent form of cancer in men, is hampered by
the limits of current clinical imaging. Angiogenesis imaging is
a promising option for detection and localization of prostate
cancer. It can be imaged by dynamic contrast-enhanced (DCE)
MRI, assessing microvascular permeability as an indicator for
angiogenesis. However, information on microvascular archi-
tecture changes associated with angiogenesis is not available.
This paper presents a new model enabling the combined
assessment of microvascular permeability and architecture.
After the intravenous injection of a gadolinium-chelate bolus,
time-concentration curves (TCCs) are measured by DCE-MRI
at each voxel. According to the convective dispersion equation,
the microvascular architecture is reflected in the dispersion
coefficient. A solution of this equation is therefore proposed to
represent the intravascular blood plasma compartment in the
Tofts model. Fitting the resulting model to TCCs measured at
each voxel leads to the simultaneous generation of a dispersion
and a permeability map. Measurement of an arterial input
function is no longer required. Preliminary validation was
performed by spatial comparison with the histological results
in seven patients referred for radical prostatectomy. Cancer
localization by the obtained dispersion maps provided an
area under the receiver operating characteristic curve equal
to 0.91. None of the standard DCE-MRI parametric maps
could outperform this result, motivating towards an extended
validation of the method, also aimed at investigating other forms
of cancer with pronounced angiogenic development.

I. INTRODUCTION

In the United States, prostate cancer (PCa) accounts for

29% and 9% of all cancer diagnoses and deaths in males,

respectively [1]. The European figures are similar [2]. De-

spite the availability of effective focal therapies, their timely

and efficient use is hampered by a lack of reliable imaging

methods for early localization of prostate cancer.

Angiogenesis play a fundamental role in the growth of

neoplastic tissue in several forms of cancer, including PCa

[3], [4], [5], [6]. It consists of the formation of a dense,

irregular network of microvessels, characterized by small,

irregular diameters and high tortuosity and permeability

(leaky walls). This microvascular network supports cancer

growth by carrying nutrients and oxygen.

Many years of research have established angiogenesis as a

reliable marker of cancer growth and aggressiveness. Cancer
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aggressiveness, defined as the risk of developing metastases,

has been reported by several authors to correlate well with

the immunohistological assessment of the microvascular

density (MVD) [7], [4], [8]. Therefore, in the past decades

several imaging methods have been introduced aiming at

cancer detection through identification of angiogenic pro-

cesses. These methods seek to quantify the main features

characterizing angiogenic microvasculature: microvascular

permeability and MVD.

An increased permeability can be detected by dy-

namic contrast enhanced (DCE) magnetic resonance imaging

(MRI). The adopted contrast agents, based on gadolinium

chelates, leak across the vascular wall into the extravascular

space (interstitium). Quantification of extravascular leakage

provides therefore an opportunity to assess vascular perme-

ability and localize the presence of angiogenic processes.

Leakage can be assessed by analysis of the transport kinetics

of gadolinium by MRI. Assessment of this transport pro-

cess can be obtained by fitting measured time-concentration

curves (TCCs) by the compartmental model introduced by

Tofts et al. [9]. This model requires knowledge on the

arterial input function (AIF), which can be either measured

separately [10], or taken from the literature [11], [12]. Fitting

the Tofts model to TCCs measured at each voxel results in

a local estimate of the volume transfer coefficient between

the intravascular and extravascular space. This can be used

to generate parametric maps of vascular permeability that

permit localizing the presence of angiogenic processes and

cancerous tissue.

More challenging is the assessment of changes in the

microvascular architecture, such as MVD increase [5]. By

using blood pool agents, such as those available for dynamic

contrast enhanced ultrasound (DCE-US), many authors have

investigated the link between angiogenesis and increased

blood perfusion [13], [14], [15]. However, while a lack

of vasomotor control and the presence of arteriovenous

shunts reduce flow resistance, this can be counterbalanced

by small microvessel diameters and increased interstitial

pressure due to extravascular leakage [5], [15]. As a re-

sult, characterization of the microvascular architecture by

perfusion quantification may be unreliable. Recently, a new

DCE-US method has been proposed to characterize the

microvascular architecture by assessment of the dispersion

kinetics of an intravascular contrast agent [16], [17], [18].

Preliminary results for PCa localization are promising and

the method seems to overcome the limitations of previous

methods based on perfusion quantification.
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This paper investigates the feasibility of dispersion imag-

ing by DCE-MRI, here referred to as magnetic resonance

dispersion imaging (MRDI). After a peripheral, intravenous

injection of a bolus of gadolinium-chelate contrast agent,

intravascular dispersion is assessed by fitting a solution of

the convective dispersion equation to TCCs measured at each

voxel. By doing this, a dispersion parameter, representing

the local ratio between contrast convection and dispersion,

can be estimated at each voxel. Dispersion, represented

by the dispersion coefficient of the convective dispersion

equation, is mainly determined by the distribution of contrast

transit times due to the multipath trajectories defined by the

microvascular architecture [19], [20]. Therefore, dispersion

represents a valuable option to characterize the microvascular

architecture.

While the convective dispersion model can directly be

applied when blood pool agents are used, the presence of

extravascular leakage requires separating the intravascular

from the extravascular phase. To this end, the dispersion

model is combined with the two-compartment Tofts model,

representing the intravascular blood plasma compartment.

The two-compartment differential equation is then integrated

leading to a new model whose parameters permit the assess-

ment of both dispersion and permeability.

The proposed method was evaluated with seven patients

diagnosed with prostate cancer and referred for a radical

prostatectomy at the Academic Medical Center University of

Amsterdam (the Netherlands). After the intravenous injection

of a bolus of gadolinium-DPTA, time concentration curves

were measured at each voxel and fitted by the proposed

model to generate both a permeability and a dispersion map.

The proposed method was then evaluated for its capability to

distinguish between cancerous and healthy tissue on a voxel

basis. The ground truth was represented by the histological

results after radical prostatectomy.

II. METHODOLOGY

A. Intravascular model

The kinetics of an intravascular indicator flowing in a

microvascular network can be modeled as a Brownian motion

process, well described by the convective dispersion equation

[19], [21]. In one dimension, z, the convective dispersion

equation is given as

dC(z, t)

dt
= D

d2C(z, t)

dz2
− v

dC(z, t)

dz
, (1)

with C(z, t) being the concentration of the indicator at

position z and time t, v being its velocity, and D being the dis-

persion coefficient. The dispersion coefficient D is affected

by concurrent processes, comprising molecular diffusion,

flow profile, and transit time distribution due to multipath

trajectories of the indicator defined by the microvascular

network [20], [21]. In the microvasculature, the latter term

is dominant, and dispersion may represent a valuable option

to characterize the microvascular architecture [16].

A solution of Eq. (1) is given by the Local Density

Random Walk (LDRW) model, which has been extensively

used to represent the kinetics of intravascular indicators, such

as ultrasound contrast agents, following a bolus injection

[22]. More recently, a modified version of the LDRW model

has been proposed that enables estimating local parameters,

independent of the history of the indicator between the

injection and detection site [16]. Its formulation is given as

C(t) = α

√

κ

2π (t− t0)
e

−κ(t−t0−µ)2

2(t−t0) . (2)

with t0 being the theoretical injection time assuming the

indicator kinetics to be constant along the entire path between

injection and detection site, α being the time integral of

C(t), µ being the mean transit time (MTT) of the indi-

cator between injection and detection site, and κ being

the estimated intravascular dispersion parameter, κ = v2/D,

which represents the local ratio between contrast convection

(squared velocity v2) and dispersion (dispersion coefficient

D). Equation (2) is a solution of the convective dispersion

equation assuming a Gaussian distribution of the contrast

bolus in space prior to its passage through each detection

voxel [16]. An intravascular dispersion map can be generated

by fitting Eq. (2) to TCCs measured at each voxel. This

parametric map can be used to detect changes in the mi-

crovascular architecture that are due to angiogenic processes.

B. Extravascular model

The LDRW model is directly applicable only for blood

pool agents. When extravascular leakage occurs, as with

gadolinium-chelate, the intravascular and extravascular di-

lution phases must be separated. In general, we can define

the measured total concentration in a tissue voxel, C(t), as

resulting from the contribution of intravascular concentra-

tion in blood plasma, Cp(t), and extravascular extracellular

concentration in the interstitium, Ce(t), given as

Ct(t) = vpCp(t)+ veCe(t), (3)

with vp being the fractional volume of the intravascular

blood plasma and ve the fractional volume of the interstitium.

Assuming the interstitium to be well represented by a single

compartment, and assuming the contribution of Cp(t) to Ct(t)
to be negligible (vp� ve), the extravasation kinetics can be

represented by the model proposed by Tofts et al. as

Ct(t) = Ktrans

∫ t

0
Cp(τ)e

−kep(t−τ)dτ, (4)

with 1/Ktrans representing the extravasation time constant

and kep = Ktrans/ve representing the back-flow rate from the

interstitium to the blood plasma [9]. Both Ktrans and kep can

be used for assessment of the microvascular permeability.

The model in Eq. (4) requires the estimation of Cp(t), i.e.,

the AIF. This is however well represented by the modified

LDRW model in Eq. (2). We can therefore substitute Cp(t) in

Eq. (4) by C(t) in Eq. (2). The resulting model, representing

both dispersion and extravascular leakage, is given as

Ct(t) = β

∫ t−t0

t0

√

κ

2π (τ− t0)
e

−κ(τ−t0−µ)2

2(τ−t0) e−kep(t−(τ−t0))dτ,

(5)

2604



with β = Ktransα . Fitting Eq. (5) to TCCs measured at each

voxel permits the simultaneous estimation of a dispersion

map, expressed by κ , and a permeability map, expressed by

kep. Estimation of Ktrans is hampered by its multiplication

by the time integral of Eq. (2), which depends on the

flow characteristics in relation to the injected contrast dose

(Stewart-Hamilton equation [22]).

C. Model fitting

Curve fitting is performed in order to estimate the five

parameters characterizing Eq. (5). To this end, the squared

error between the model in Eq. (5) and the measured TCC is

minimized. Because of the nonlinear fashion of the adopted

model, a nonlinear iterative fitting scheme is adopted. In

particular, the search space should be confined in order to

reduce the risk of convergence to local minima. To this end,

the Trust-Region Reflective method is adopted [23].

A number of search schemes were evaluated by dedicated

simulations. For several parameterizations spanning the space

representing measured data in patients, 100 TCCs were gen-

erated by the proposed model with additional white Gaussian

noise, such that the signal-to-noise ratio was similar to that

measured in patients (25 dB). The fit error and the fitting

time were considered for evaluation of the fitting schemes.

Eventually, the selected scheme combines a search grid with

the adopted iterative search. In particular, in order to limit

the number of parameters to be estimated in the iterative

search, the theoretical injection time t0 is estimated by a grid

search with a resolution of 2 s. For each t0, a Trust-Region

Reflective search is performed on the remaining parameters.

For analysis of the acquired data, a TCC must be fitted for

each voxel covering the selected ROI. After the parameters

kep and κ are estimated at each voxel, two parametric maps

representing permeability and dispersion can be generated. In

order to assess the reliability of the estimated parameters, the

determination coefficient r2 of the obtained fit is derived for

each voxel; TCC fits with r2 < 0.75 are discarded, as poor fits

may provide unreliable parameter estimates. All the analysis

is implemented in Matlab (The MathWorks Inc., Natick, MA)

D. Validation

DCE-MRI was performed in seven patients referred for

radical prostatectomy at the Academic Medical Center, Uni-

versity of Amsterdam (the Netherlands), by intravenous in-

jection of a 0,1-mmol/Kg bolus of gadolinium-DPTA. All the

included patients had signed informed consent. Imaging was

performed with a 1.5-T MRI scanner (Magnetom Avanto,

Siemens) equipped with an endorectal coil, and using a

spoiled gradient recalled sequence and phase oversampling.

The adopted sequence parameters were repetition time of

50 ms, echo time of 3.9 ms, flip angle of 70 degrees, slice

thickness of 4 mm, and pixel size of 1.67x1.67 mm2. The

resulting time resolution is 2 s for one volume. All data were

exported for further analysis in DICOM (Digital Imaging and

Communications in Medicine) format.

A preliminary validation was performed by comparison

with the histological results. Histological analysis was per-

Fig. 1. Example of MRI T2 image with corresponding histology analysis
and parametric maps of κ and kep.

formed on 4-mm slices where cancerous tissue was marked

by a pathologist based on microscopic analysis of cell

differentiation (Gleason score) [24]. Only those slices where

large regions of interest (ROIs) could be defined to represent

a reliable reference for cancerous and healthy tissue were

considered. The same ROIs where then overlapped on the

corresponding MRI parametric maps in order to assess the

ability of the estimated parameters to detect PCa. Tissue

classification was then evaluated at voxel level on up to four

MRI slices per patient, 19 slices in total. The classification

performance of each parameter was evaluated in terms of

sensitivity, specificity, and area under the receiver operating

characteristic (ROC) curve. All the ROI voxels representing

the class of healthy and cancerous tissue were used for

this evaluation. The threshold leading to the ROC point

that is closest to the top-left corner was considered as

the optimal classification threshold for the estimation of

sensitivity and specificity. Figure 1 shows an example of

parametric dispersion (κ) and permeability (kep) maps with

corresponding histology results.

Apart from the estimation of dispersion (κ) and perme-

ability (kep) by the model in Eq. (5), the assessment of

permeability was also performed by fitting the standard Tofts

model and estimating its parameters (kep and Ktrans). To this

end, estimation of the AIF was necessary. We adopted an

average AIF based on the literature and modeled with a

double exponential, as suggested in [12].

From the fitted model in Eq. (5), the MTT of Cp(t),
represented by parameter µ of the modified LDRW model

in Eq. (2), was also estimated. The MTT is a measure of

intravascular perfusion, and is often adopted for detection

of angiogenesis [16]. Additional empiric parameters that

are often adopted in the literature were also estimated and

adopted for comparison. These are the wash-in rate, the peak

enhancement, slope 50, and wash-out rate [25].
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III. RESULTS

Only curve fits with r2 > 0.75 were used to evaluate

the classification performance of the method. The discarded

curves were however only 8% of all the measured curves,

confirming an accurate fitting performance.

All the classification results are reported in Table I. Clas-

sification is evaluated at a voxel level in terms of sensitivity,

specificity, and ROC curve area.

TABLE I

CLASSIFICATION RESULTS.

Parameter Sensitivity (%) Specificity (%) ROC area

κ (MRDI) 82.6 89.5 0.91
kep (MRDI) 58.0 80.9 0.72
MTT (MRDI) 61.2 43.7 0.52
kep (Tofts) 85.3 85.3 0.91
Ktrans (Tofts) 79.7 83.1 0.88
wash-in rate 76.7 76.1 0.81
wash-out rate 80.5 85.7 0.88
slope 50 75.3 76.1 0.82
peak enhancement 75.1 82.6 0.82

IV. DISCUSSION AND CONCLUSIONS

A new DCE-MRI method is proposed for the characteriza-

tion of microvascular architectures by assessment of contrast

intravascular dispersion, without need for a separate AIF

estimation. The results are promising and motivate further

research on this new option for PCa localization.

The use of multi-parametric MRI, usually combining stan-

dard T2, permeability, and diffusion-weighted imaging, is

recently gaining attention in order to improve PCa diagnosis.

Also in this context, MRDI can provide a valuable contribu-

tion by integration of a dispersion parameter characterizing

the microvascular architecture.

The proposed dispersion maps show accurate classification

of cancer tissue as compared to histology. Classification by

the simultaneously-estimated permeability parameter kep is

less accurate. The reason can possibly reside in a dependency

between the model parameters. In future work, model sensi-

tivity analysis will be carried out to investigate this issue.

Histology was considered as the ground truth for vali-

dation. However, while histology grading is based on the

degree of cell differentiation (Gleason score) [24], dispersion

characterizes the microvascular architecture. In the future,

comparison with immunohistological MVD maps will there-

fore be considered.

In general, although the proposed preliminary validation

focuses on PCa diagnosis, the proposed method is applicable

for diagnosis of any form of cancer where angiogenesis and

neovascularization play an important role.
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