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Abstract²Heart rate variability (HRV) analysis has emerged 

as an important research topic to evaluate autonomic cardiac 

function. However, traditional time and frequency-domain 

analysis characterizes and quantify only linear and stationary 

phenomena. In the present investigation, we made a 

comparative analysis of three alternative approaches (i.e., 

wavelet multifractal analysis, Lyapunov exponents and 

multiscale entropy analysis) for quantifying nonlinear 

dynamics in heart rate time series. Note that these extracted 

nonlinear features provide information about nonlinear scaling 

behaviors and the complexity of cardiac systems. To evaluate 

the performance, we used 24-hour HRV recordings from 54 

healthy subjects and 29 heart failure patients, available in 

PhysioNet. Three nonlinear methods are evaluated not only 

individually but also in combination using three classification 

algorithms, i.e., linear discriminate analysis, quadratic 

discriminate analysis and k-nearest neighbors. Experimental 

results show that three nonlinear methods capture nonlinear 

dynamics from different perspectives and the combined feature 

set achieves the best performance, i.e., sensitivity 97.7% and 

specificity 91.5%. Collectively, nonlinear HRV features are 

shown to have the promise to identify the disorders in 

autonomic cardiovascular function. 

I. INTRODUCTION 

Heart rate variability (HRV) refers to the fluctuations in 

the sequential heart-beat intervals, also called RR intervals. 

Heart-beat dynamics are highly pertinent to the function of 

autonomic nervous system. Thus, HRV analysis plays an 

important role in assessing the disorders in autonomic 

cardiovascular function. Since the 1980s, linear and 

frequency-domain approaches are widely used in the HRV 

analysis, and are shown to have a certain degree of 

descriptive and predictive power. However, conventional 

frequency-domain analysis and linear statistical approaches 

tend to have limitations to capture nonlinear and 

nonstationary behaviors in the long-term HRV time series. 

For example, Fast Fourier transformation (FFT) is efficient to 

transform data from time domain to frequency domain. 

However, Fourier analysis does not provide the temporal 

localization of frequency components, and assumes that 

spectral components exist at all times (i.e., stationarity). Also, 

linear statistical methods, e.g., analysis of variance 
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(ANOVA), have certain difficulties to capture the 

nonlinearity, nonstationarity and high-order variations. 

Therefore, linear methods tend to bring less realistic 

characterization and quantification of nonlinear time series. 

In the present paper, we aim to make a comparative 

analysis of three different approaches for quantifying 

nonlinear dynamics in cardiac systems, and evaluate their 

classification performances. For that purpose, we have used 

three well-known classification algorithms, namely linear 

discriminant analysis, quadratic discriminant analysis and k-

nearest neighbor. Three nonlinear methods are multifractal 

analysis, Lyapunov exponents and multiscale entropy 

analysis. It may be noted that we build three classification 

models for features extracted from three nonlinear methods 

individually so as to establish the benchmark performance of 

each method. Furthermore, features from three nonlinear 

methods are combined to exploit more useful information 

from different perspectives, thereby establishing a better 

model for detecting disorders in autonomic function. 

This paper is organized as follows: Section II will 

introduce the methodology of three nonlinear approaches, 

feature selection and classification models. Materials and 

experimental design will be discussed in Section III. Section 

IV shows the experimental results of HRV analysis with 

three alternative nonlinear methods. Section V discusses and 

concludes the studies in this paper. 

II. RESEARCH METHODOLOGY 

A. Wavelet Multifractal Analysis 

The method of wavelet transform modulus maxima 
(WTMM) is widely used to quantify the multifractal 
spectrum in a nonlinear time series. This wavelet-based 
multifractal analysis evaluates the local Hurst exponent D 
through the continuous wavelet transform [1]. Note that this 
method uses wavelets in different scales as the box functions 
to quantify the self-similarity in the time series. The partition 
function <:Má =; is defined as 
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maxima of modulus for all scales =� Q =, H Ð æ:�; denotes 
the maxima line at the scale =. Hence, <:Má =; is the sum of 
q-th powers of maxima¶V in wavelet modulus. If = \ r
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<:Má =; � =�:ä;. It was shown that monofractal signals yield 
a linear scaling-exponent function: ì:M; L M* F s, where * 
is the global Hurst exponent. For multifractal signals, there 
will be a nonlinear scaling-exponent function: ì:M; L
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qh(q) - D(h), where local Hurst exponent is not constant 

and calculate as h(q) = dr(q)jdq. To this end, the 

multifractal spectrum D(h) can be derived from r(q) through 

a Legendre transform, D(h) = qh - r(q). 

Recent research shows that a major life-threatening 

condition, i.e., congestive heart failure, leads to a loss of 

multifractality [2]. In this present investigation, we extracted 

the scaling exponents function and multifractal spectrum 

from HRV time series. As shown in Figure la, scaling 

exponents r(q) of the healthy subject (blue dots) are more 

linear than those of heart failures (red crosses). Multifractal 

spectrum D(h) in Figure lb is obtained through a Legendre 

transform from the r(q) in Figure la. Noted that multifractal 

spectrum D(h) for the heart failure group is narrower than 

healthy controls, indicating the loss ofmultifractality. 
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Figure 1. Multifractal analysis of heart rate variability for healthy control 

and heart failure group. (a) r(q) versus q. (b) D(h) versus h. 

B. Lyapunov Exponents 

Lyapunov exponents measure the exponential divergence 

or convergence of nearby trajectories in nonlinear systems, 

which are one of the fundamental indicators of deterministic 

chaos [3]. Given a time series, then-dimensional phase space 

can be reconstructed (i.e., through Takens' embedding 

theorem) to monitor the long-term evolution of an 

infinitesimal n-sphere of initial conditions. The ith Lyapunov 

exponent is then defined in terms of the length of the 

ellipsoidal principal axis p; ( t): 

. 1 p;(t) 
A;= lzm-ln--

t->= t p;(O) 

where A; 's are ordered from the largest to the smallest. 

Further, Lyapunov spectrum can be used to estimate the rate 

of entropy production and the Kaplan-Yorke dimension of 

nonlinear dynamical system as follows: 

L~=i A; 
DKY = k + l.ii;+il 

where k is the maximum integer such that the sum of the k 

largest exponents is still non-negative. Moreover, the sum of 

all the positive Lyapunov exponents gives an estimate of the 

Kolmogorov-Sinai entropy: 
n 

EKs = L e (/l;) . A; 

i=i 
where 8(') is the Heaviside function. 

C. Multiscale Entropy Analysis 

Multiscale entropy (MSE) analysis was first proposed by 

Costa et al. [ 4]. The MSE approach calculates sample entropy 

at multiple scales of the time series. The two steps in MSE 

are as follows: (i) For a given time series {x11 ···,xN}, 

multiscale coarse-grained time series are built by taking local 

averages as follows: 

y(T) = ~ '\'jT X; 
1 

T Li=(j-i)r+i 

where r represents the scale factor and 1 ::::: j ::::: N fr. For 

scale 1, y§11 is simply the original time series. (ii) Then, the 

sample entropy is calculated for each of the multiscale 

coarse-grained time series yY1. The MSE spectrum plots the 

variations of sample entropy vs. the scale factor r. 
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Figure 2. Sample entropy as a function of the scale factor for multiscale 

coarse-grained time series of white and l/fnoises. 

Figure 2 shows that white noises yield a higher value of 

sample entropy than l/f noises in the scale 1. However, the 

sample entropy for l/f noises does not show big variations as 

the scale increases, while the value of sample entropy for 

white noises monotonically decreases from scale 1 to 20. It 

may be noted that the sample entropy for white noises 

becomes smaller than the corresponding values for l/f noises 

in the scale 3 and above. The results of MSE analysis are 

consistent with the fact that, unlike white noises, l/f noises 

contain correlations across multiple time scales and is, 

therefore, more complex than white noises. However, this 

information cannot be extracted, and is usually buried in the 

single-scale entropy analysis. 

D. Feature Selection and Classification 

Note that a large amount of features are extracted from 

three nonlinear approaches. As a result, this may bring the 

"curse of dimensionality" issues for classification models, 

e.g., increased model parameters and overfitting problems 

[ 5]. Hence, we use the strategy of sequential forward feature 

selection to optimally choose a subset of features that are 

strongly correlated with process variations. Starting from an 

empty feature subset, an additional feature ,,s+ is selected 

when it maximizes the objective function f(Se + ,,s+), which 

wraps the classification model. This process is repeated until 

it reaches the desired subset size. Feature selection not only 

surmounts the aforementioned classification complexity and 

overfitting problems, but also provides faster and more cost­

effective models with the optimal feature subset. 

Classification models associate the input feature pattern ,,s 

to one of the X classes of process conditions, C11 ... , Cx. We 

partitioned the whole dataset 'D into the training dataset 

'Di= {(y(i),,,s(i))li = 1, ... ,Ni} and testing dataset 'D2 = 

{(y(i),,,s(i))li =Ni+ 1, ... ,Ni+ N2}, where Ni and N2 are 
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the size of training and testing datasets, y( i) takes values in 

the output sets C11 ... ,Cx, ,,s(i) = {-6;11 -6;2 , ... ,"5;c} is the set 

oft selected features for the ith record in 'D. Two parametric 

classification models (i.e., linear and quadratic discriminant 

analysis) and one non-parametric k-nearest-neighbor (KNN) 

are considered in this investigation. 

In parametric methods, we assumed a multivariate 

Gaussian distribution for each class density as: 
1 1 T -1 

F ( ) - -2(15-µc) L: c (15-µc) 

Jc ,,s - (2rr)f/2IL:c1112 e 

If rrc is the prior probability of class c, and L~=l nc = 1, 

linear discriminant analysis (LDA) assumes that all classes 

have a common covariance matrix Le = L, Ve. Therefore, 

linear discriminant functions are expressed as 
1 

oc(,,s) = -6T L; -l µc - Z µr L; -l µc + [ognc 

Similarly, quadratic discriminant analysis (QDA) assumes 

different covariance matrix Le for each class and the 

quadratic discriminant functions are defined as 

1 1 1 
oc(,,s) = --zlogl L; cl -2 (,,s - µc)T L; ~ (,,s - µc) + [ognc 

These two discriminant functions yield linear and quadratic 

decision boundaries between each pair of classes c and m, 

i.e., {boundary ,,s: 8e(,,s) = 8-m(,,s)} [6]. 

The KNN rule is an intuitive method that classifies 

unlabeled examples based on nearest training samples in the 

feature space. For a given feature point ,,s from the testing 

dataset 'D2 , find the k "closest" feature samples ,,s(r)' r = 
1, · · · , k in the training dataset 'D1 and assign ,,s to the class that 

appears most frequently within the k-subset. 

III. MATERIALS AND EXPERIMENTAL DESIGN 

In this investigation, we analyzed the 24-hour heart rate 

time series using three aforementioned nonlinear approaches. 

The fundamental hypothesis here is that nonlinear properties 

underlying HR V time series are different between healthy 

control and heart failure subjects. In total, we have 54 

recordings of normal sinus rhythm (NSR) and 29 recordings 

of congestive heart failure (CHF), available in the PhysioNet 

[7]. The HR V time series is preprocessed to eliminate 

erroneously large intervals and outliers due to missed beat 

detections following the same procedures as in [2]. The 

preprocessing procedures include (a) a moving-window 

average filter, and (b) increment smoothing. For the 5 

consecutive points in a moving window, the central point is 

removed if it is greater than twice the local mean calculated 

from the other four points. There is no interpolation in this 

moving-window average filter. The second step calculates 

differences between adjacent elements in the time series. If 

successive increments has opposite sign with amplitudes > 

3xstandard deviation of increment series, both increments 

will be replaced by the interpolated value in between. This 

present investigation uses the new HR V time series that is 

reconstructed from post-processed series of increments. 

A. Experimental Design 

As shown in figure 3, we designed a computer 

experiment to evaluate the comparative performance of three 

nonlinear approaches. Features extracted in the wavelet 

multifractal analysis include multifractal spectrum r( q) and 

fractal dimension D(h). Further, we extracted the spectrum 

of Lyapunov exponents along with Kaplan-Yorke dimension 

DKY and the Kolmogorov-Sinai entropy EKs· Finally, 

multiscale entropy analysis provides sample entropies in 

multiple temporal scales ofHRV time series. To this end, the 

performances of classification models are not only evaluated 

for each group of features but also the combined feature set 

from all three nonlinear approaches. 

Long-term Heart Rate 

Time Series 

Feature Selection 

Classification Model 

Figure 3. Flow Chart of research methodology used. 

B. Cross-Validation and Performance Evaluation 

To reduce the bias in classification performance 

evaluation, we have utilized both K-fold cross-validation and 

random subsampling in this investigation. K-fold cross­

validation partitions the whole dataset 'D into K folds, in 

which K-1 folds are used for the training purpose and the rest 

one fold for testing. The 1-fold of testing samples is shifted 

without overlaps in the dataset 'D for K times. The estimate of 

true performance is obtained as the average of those K error 

rates on testing samples. In addition, random subsampling 

method will randomly replicate such K-fold cross-validation 

experiments for 100 times by randomly creating the K-fold 

partitions to obtain the probability distribution of 

performance statistics. This integration of K-fold cross­

validation and random subsampling methods can prevent the 

biases from the inequitable selection of training dataset [6]. 

Two performance metrics used in this investigation are 

sensitivity and specificity. Both metrics are computed from 

testing dataset 'D2 . Sensitivity measures the proportion of 

actual positives, i.e., heart failure conditions, are correctly 

identified as such. Specificity measures the proportion of true 

negatives that represents the healthy controls are correctly 

identified. It may be noted that there are two classes for 

response variable y;, i.e., + 1 for heart failure and -1 for 

healthy control in this present investigation. The performance 

statistics, sensitivity and specificity, are defined as 

where I 0 is the indicator function, y;, Yi are the actual and 

predicted class labels. 
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TABLE I. 1-DIMENSIONAL UNPAIRED t-TEST AND KS TEST FOR SELECTED FEATURES 

Statistic Tests 
Analysis Test Statistics 

Methods* 1 ~t 2nd 3td 4th 5th 6th 7th 8th 9th 10th 

Unpaired WMA 6.2e-04 3.Se-03 0.012 8.9e-04 3.le-03 0.030 8.Se-03 0.037 0.020 3.Se-03 

t-test LE 2.le-04 6.2e-04 8.9e-04 0.440 0.021 0.180 0.025 0.904 0.417 1.le-04 

(p-value) MSE 1.2e-05 4.6e-04 0.054 2.le-03 3.Se-03 0.071 1.8e-03 1.6e-03 1.2e-03 4.0e-03 

Two-sample WMA 0.613 0.372 0.324 0.467 0.425 0.343 0.430 0.343 0.375 0.433 

KS test LE 0.565 0.613 0.467 0.250 0.322 0.326 0.462 0.096 0.241 0.462 

(KS statistic) MSE 0.671 0.393 0.305 0.377 0.303 0.348 0.374 0.374 0.383 0.327 
*\VMA- Wavelet Multifractal Analysis; LE - Lyapunov Exponents; MSE - Multiscale Entropy Analysis 

IV. RESULTS 

As shown in Table I, we evaluated the individual featUTe 

separately using two statistical tests, namely unpaired t-test 

and Kolmogorov-Smimov (KS) test. There are a total of 30 

features, 10 in each nonlinear dynamic method, that are 

optimally chosen by the feature selection algorithms. In 

unpaired t-test, the smaller p-value indicates that we have 

more evidences to reject the null hypothesis, i.e., this feature 

has the same distribution between NSR and CHF groups. A 

larger KS statistic shows that this feature has more distinct 

cumulative distribution functions between NSR and CHF 

groups. Table I shows that two statistic tests agree on the fact 

that most of the features are significant, because the majority 

of p-values are <0.05 and KS statistic >0.3. However, 1-

dimensional statistical test does not account for the feature 

dependence in the high-dimensional space. 

Therefore, we carried out classification experiments with 

three groups of featUTes and three different classification 

models. It may be noted that wavelet multifractal analysis 

and multiscale entropy analysis have previously yields 

important results pertinent to the nonlinear behaviors in the 

heart rate time series [8, 9]. Table II shows the mean and 

standard deviation of performance metrics for all three 

classification models. The average performances of LDA 

(i.e., sensitivity and specificity) are shown in Table II to be as 

follows: 91.1 % and 57.3% for wavelet multifractal analysis, 

92.6% and 74.7% for Lyapunov exponents and 93.2% and 

64.2% for multiscale entropy analysis. In addition, if we 

combine the featUTes from all three nonlinear analysis 

methods, LDA classification achieves a sensitivity of 97.7% 

and a specificity of 91.5%, and yields the better overall 

accuracy 92.6% (i.e., calculated in terms of (29 x 0.977 + 54 

x 0.915)/(29 + 54)) than QDA and KNN models. 

TABLE IL PERFORMANCES OF CLASSIFICATION MODELS FOR THREE NONLINEAR 

DYNAMIC ANALYSIS METHODS 

Classification Nonlinear 
Performances 

models Methods 
Sensitivity (%) Specificity (%) 

mean s.d. mean s.d. 

WMA 91.1 0.28 57.3 0.50 

LDA 
LE 92.6 0.04 74.7 0.10 

MSE 93.2 0.03 64.2 0.01 

COMBINED 97.7 0.01 91.5 0.04 

WMA 91.4 0.47 69.3 0.48 

QDA 
LE 93.8 0.04 74.0 0.05 

MSE 91.1 0.08 78.3 0.18 

COMBINED 98.8 0.02 89.1 0.10 

WMA 92.0 0.01 68.2 0.07 

KNN 
LE 95.3 0.02 62.9 0.07 

MSE 95.6 0.02 64.7 0.09 

COMBINED 94.0 0.05 80.4 0.06 

V. CONCLUSION AND DISCUSSION 

In this present study, we conducted a comparative 

analysis of three nonlinear approaches and their capabilities 

to identify congestive heart failure subjects using the 24-hour 

heart rate time series. The results of computer experiments 

demonstrated that three nonlinear approaches yield a 

comparable performance. The MSE approach is slightly 

better by delineating nonlinear and nonstationary behaviors 

in multiple scales of time series. For the combination feature 

sets, the LDA classification models achieve a sensitivity 

around 97.7% and with small deviations (<0.02%) and an 

average specificity of 91.5% with 0.05% deviations. The 

QDA models yields a sensitivity around 98.8% with small 

deviations (<0.03%) and a specificity of 89.1% with the 

combined features, but the KNN model provides a relatively 

low sensitivity (~94%) with a specificity of 80.4%. 

In a nutshell, three nonlinear approaches are shown to 

effectively capture nonlinear dynamic behaviors in the 24-

hour heart rate time series. The outstanding performances of 

the combinational feature set show that three nonlinear 

methods capture nonlinear characteristics in HRV time series 

from different perspectives. Collectively, they provide a more 

complete pictUTe of nonlinear dynamics in HRV datasets. 
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