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Abstract ² Vectorcardiogram (VCG) signals contain a 

wealth of dynamic information pertinent to space-time 

cardiac electrical activities. However, few, if any, previous 

investigations have studied disease-altered nonlinear 

dynamics in the spatiotemporal VCG signals. Most previous 

nonlinear dynamic methods considered the time-delay 

reconstructed state space from a single ECG trace. This 

paper presents a novel multiscale recurrence approach to 

not only explore VCG recurrence dynamics but also resolve 

the issue of recurrence computation for the large-scale 

datasets. As opposed to the traditional single-scale 

recurrence analysis, we characterize and quantify the 

recurrence behaviours in multiple wavelet scales. In 

addition, wavelet dyadic subsampling enables the large-scale 

recurrence analysis, but it is used to be highly expensive for 

a long-term time series. The classification experiments show 

that multiscale recurrence analysis detects the myocardial 

infarctions from 3-lead VCG with an average sensitivity of 

96.8% and specificity of 92.8%, which show superior 

performance (i.e., 5.6% improvements) to the single-scale 

recurrence analysis. 

I. INTRODUCTION 

The human heart is a 3-dimensional object and its 

electrical activities are near-periodically conducting 

across space and time. Electrocardiogram (ECG) contains 

a wealth of dynamic information pertinent to cardiac 

functioning, but 1-lead ECG only captures one directional 

view of spatiotemporal heart activities. In contrast, 3-lead 

vectorcardiogram (VCG) monitors the spatiotemporal 

cardiac electrical activity along three orthogonal X, Y, Z 

planes of the body, namely, frontal, transverse, and 

sagittal [1]. However, 3-lead VCG is not as commonly 

used as 12-lead ECG because medical doctors are 

accustomed to using the time-domain ECG in clinical 

applications. Dower et al. [2] and our previous study [3] 

showed that 3-lead VCG can be linearly transformed to 

12-lead ECG without a significant loss of clinically useful 

information. Thus, 3-lead VCG surmounts not only the 

information loss in 1-lead ECG but also the redundant 

information in 12-lead ECG. Orthogonal VCG signals 

provide an unprecedented opportunity to investigate the 

disease-altered electrical activity in both space and time. 
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In addition, technological advancements make 

enormous amount of ECG/VCG data readily available in 

the healthcare system of the 21
st
 century. It is often 

tiresome and implausible for human experts to visually 

inspect the large-scale datasets for disease patterns. There 

is an urgent need to develop novel methodologies that can 

efficiently recognize disease-altered patterns underlying 

long-term spatiotemporal VCG signals. However, real-

world physiological systems show high level of nonlinear 

and nonstationary behaviors in the presence of extraneous 

noises. Conventional frequency-domain analysis and 

linear statistical approaches tend to have limitations to 

capture the nonlinear and nonstationary behaviours. It 

may be noted that nonlinear dynamic methods (e.g., 

recurrence analysis) have been widely developed and 

utilized to extract the knowledge pertinent to cardiac 

disorders from the new perspective of complex systems. 

However, most of previous nonlinear methods only 

considered the lag-reconstructed state space from 1-lead 

ECG signals. Although 3-lead VCG provides a new way 

to investigate the cardiac dynamical behaviors, few 

previous approaches have studied the disease-altered 

recurrence dynamics in the space-time VCG signals. This 

present paper developed a novel multiscale recurrence 

approach to not only explore recurrence dynamics but 

also resolve the computational issues for the large-scale 

datasets. The main contributions are as follows: (1) 

Single-scale vs. multi-scale recurrence analysis: As 

opposed to the traditional recurrence analysis in a single 

scale, we delineate the recurrence dynamics into multiple 

wavelet scales. (2) Long-term recurrence analysis: Few, 

if any, previous approaches have been capable of 

quantifying the recurrence dynamics from a long-term 

time series. Recurrence computation is highly expensive 

(i.e., 1:J:J F s; t¤ ;) for a long-term time series of size 

J. The dyadic subsampling in wavelet packet 

decomposition effectively resolves the computational 

issues for the large-scale recurrence analysis. (3) Disease-

altered recurrence dynamics: It is shown that recurrence 

dynamics are significantly different in wavelet scales 

between healthy control (HC) and myocardial infarction 

(MI) subjects. Multiscale recurrence analysis identifies 

the MI with an average sensitivity of 96.8% and 

specificity of 92.8%, which is much better (i.e., 5.6% 

increase) than the single-scale recurrence analysis. 

The structure of paper is organized as follows: Section 

II introduces the research methodology. Materials and 

implementation results are presented in Section III. 

Section IV discusses and concludes this study. 
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Figure 1. Flow diagram of research methodology and experimental design. 

II. MULTISCALE RECURRENCE ANALYSIS 

Wave let analysis is an effective time-frequency 

decomposition tool, including continuous wavelet 

transformation (CWT), discrete wavelet transformation 

(DWT) and wavelet packet decomposition (WPD). In 

CWT, sub-signals in wavelet scales maintain the same 

length as the original signal, resulting in redundant 

information [ 4]. DWT introduces both the wavelet 

function and scaling function for decomposing the 

original signal into the approximations and details [ 5]. 

WPD is similar to DWT, but it further divides not only 

the approximations but also the details in each wavelet 

scale. This provides a better resolution in both time and 

frequency scales [6]. As shown in figure 1, the long-term 

VCG signal, followed by the dyadic subsampling, is 

decomposed into wavelet subseries. Each subseries is 

iteratively decomposed to produce 2k subsets of wavelet 

sub-signals, denoted as w k,n, n = 0, ... , zk - 1, in the kth 

level. These shorter subseries will make the expensive 

recurrence computations not only plausible for the long­

term time series but also more effective under the 

stationary assumptions in multiple wavelet scales. 
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Figure 2. 3-lead VCG (a) and its recurrence plot (b ). 

Within each wavelet scale, recurrence analysis is 

utilized to quantify the underlying dynamics of nonlinear 

systems. We have previously utilized recurrence 

quantification analysis (RQA) methods to characterize 
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and quantify cardiac electrical dynamics [5-7]. This 

present paper firstly integrates wavelet packet 

d~composition with recurrence analysis to quantify 

disease-altered dynamics underlying long-term VCG 

signals. Recurrence plot (RP) is an effective tool to 

visualize the recurrences of system states in the state 

space. As shown in figure 2, recurrence plot captures 

topological relationships existing in the 3-lead VCG 

vector loops. The recurrence plot, RP;,j == 0(E -

llx(i) - x(j)ll), defines the recurrence of states x(i) and 

x(j), where 0 is the Heaviside function. The texture 

patterns in recurrence plots reveal nonlinear 

characteristics of the 3-lead VCG (see figure 2(b)). For 

examples, diagonal structures represent the near-periodic 

patten:is and vertical structures show the nonstationary 

behav10rs. Furthermore, six RQA features are extracted to 

~uanti~y the recurrence dynamics of nonlinear systems, 

mcludmg recurrence rate (RR), determinism (DET), 

longest diagonal line (LMAX), entropy (ENT), laminarity 

(LAM) and trapping time (TT) [8]. 

III. MATERIALS AND RESULTS 

A. Databases 

The database contains 448 VCG recordings (368 Mis 

and 80 HCs) available in the PhysioNet PTB Database 

[9]. Each recording contains 15 simultaneous heart­

monitoring signals, namely, the conventional 12-lead 

ECG and the 3-lead VCG. The signals were digitized at 1 

kHz sampling rate with a 16-bit resolution over a range of 

±16.384 mV. The 80 HC recordings are acquired from 54 

healthy subjects and the 368 MI recordings from 148 

patients. The VCG recordings are typically of ~2 min 

duration, and all the signals are recorded for at least 30s. 

Our previous investigation [3] demonstrated the 12-lead 

ECG can be derived from 3-lead VCG using a customized 

transform, which shows better performance than the 

traditional Dower transform. 
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TABLE I. 1-DIMENSIONAL UNPAIRED T-TEST AND KS TEST FOR SELECTED FEATURES. 

Statistic tests 
Test statistics 

l st 2nd 3rd 4th 5th 6th ih 8
th 9th 10th 

Un2aired t-test (e-value2 5.4e-04 4.2e-03 0.019 1.3e-03 3.6e-03 1.2e-03 5.le-03 0.016 0.022 0.047 

KS test {KS statistic 2 0.562 0.542 0.547 0.520 

B. Feature selection 

Because six RQA quantifiers, namely RR, DET, 

LMAX, ENT, LAM, TT are extracted for each wavelet 

subseries, the kth level wavelet packet decomposition will 

lead to a high-dimensional feature space (i.e., 6x2k 

number of features). In this present study, there are 288 

features extracted from the VCG database, i.e., L~=4 6 x 

zk for the level 4 and 5 decomposition. As a result, this 

may bring the issues of "curse of dimensionality" for 

classification models, e.g., increased model parameters 

and overfitting problems. Hence, sequential forward 

feature selection is utilized to surmount the complexity 

and overfitting problems in classification models, but also 

provide cost-effective models with the optimal feature 

subset. 
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Figure 3. Variations of classification error rates with respect to the size 

of feature subset. The green circle marks an optimal size of 10. 

As shown in figure 3, error rates are decreased when 

the optimal features are sequentially added into 

classification models. It may be noted that the error rate 

oscillates rather than decreases for a set of features larger 

than 10. Thus, the optimal size of feature subset is 

selected as 10 to avoid a complex model. Table I shows 

the statistical evaluation of the individual feature using 

the unpaired t-test and Kolmogorov-Smirnov (KS) test. 

Both statistical tests show that most of the features 

selected are significant, because their p-values are <0.05 

and KS statistics are >0.3. However, 1-dimensional 

statistical test does not account for the feature dependence 

in the high-dimensional space. 

C. Classification 

Three classification models, i.e., K-nearest-neighbor 

(KNN), logistic regression (LR) and artificial neural 

network (ANN), were constructed to evaluate the 
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0.643 0.638 0.624 0.507 0.514 0.554 

combinatorial effects of multi-dimensional recurrence 

features. As shown in table II, the mean and standard 

deviation of classification performances (i.e., sensitivity, 

specificity and correct rate) are computed from 100 

random replications of the K-fold cross-validation (i.e., 

from 2-fold to 10-fold). For KNN models, Table II shows 

that the mean sensitivity yields a stable increasing trend 

from 94.9% to 96.9% with small deviations (0.2%) when 

the K-fold number is varied from 2-fold to 10-fold. The 

mean specificity is around 81.1 % with small deviations 

(1.0%) for the 10-fold cross validation. The mean correct 

rate is shown to increase from 91.4% to 94.1% with the 

K-fold number for the KNN model. The experimental 

results of KNN models show that the proposed multiscale 

recurrence features are effective for the identification of 

myocardial infarctions. 

TABLE IL PERFORMANCE RESULTS OF THREE CLASSIFICATION MODELS* 

Classification Performances(%) 

K-fold 
KNN LR ANN 

number 

SEN SPE CR SEN SPE CR SEN SPE CR 

2 
94.9 75.4 91.4 93.8 87.8 92.7 95.l 86.3 93.6 

(0.5) (2.3) (0.5) (0.9) (2.4) (0.7) (0.6) (2.8) (0.5) 

3 
95.6 78.7 92.6 95.5 90.0 94.6 96.1 89.6 94.9 

(0.4) (1.0) (0.4) (0.6) (1.9) (0.6) (0.5) (2.0) (0.5) 

4 
96.3 79.0 93.3 95.6 90.2 94.6 96.3 90.4 95.3 

(0.3) (1.5) (0.3) (0.6) (1.6) (0.6) (0.4) (1.6) (0.4) 

5 
96.4 80.2 93.5 95.9 90.0 94.9 96.5 91.5 95.6 

(0.3) (1.3) (0.2) (0.4) (1.4) (0.5) (0.3) (1.8) (0.4) 

6 
96.5 81.1 93.8 96.1 90.3 95.l 96.6 91.8 95.7 

(0.2) (1.3) (0.2) (0.3) (1.1) (0.4) (0.3) (1.5) (0.3) 

7 
96.7 80.9 93.9 96.1 90.9 95.2 96.7 92.2 95.9 

(0.2) (1.1) (0.2) (0.3) (1.0) (0.3) (0.3) (1.1) (0.3) 

8 
96.8 80.5 93.9 96.4 90.8 95.4 96.7 92.5 96.0 

(0.2) (1.2) (0.2) (0.2) (0.9) (0.3) (0.2) (1.2) (0.3) 

9 
96.9 81.1 94.1 96.4 90.9 95.4 96.8 93.3 96.1 

(0.2) (1.1) (0.2) (0.2) (0.9) (0.2) (0.2) (1.2) (0.3) 

10 
96.9 81.1 94.1 96.5 91.1 95.5 96.8 92.8 96.1 

(0.2) (1.0) (0.1) (0.2) (0.9) (0.2) (0.2) (1.1) (0.2) 
... * SEN, SPE and CR denote the sens1liv1ty, spec1fic1ty and correct rate 

respectively. The standard deviation is shown in the parentheses. 

In addition, Table II shows that logistic regression 

(LR) models yield the mean sensitivity from 93.8% to 

96.5% when the K-fold number is varied from 2-fold to 

10-fold. The mean specificity of LR models is increased 

from 87.8% to 91.1 % with respect to the K-fold number, 

which is significantly better (about 10%) than the KNN 

models. The correct rates of LR models are increased 
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from 92.7% to 95.5% with small deviations (<0.7%) 

when the K-fold number is varied from 2-fold to 10-fold. 

However, Table II shows that the ANN models 

achieve the best classification performances for the 

identification of myocardial infarctions based on 

multiscale recurrence features extracted from 3-lead VCG 

signals. The mean sensitivity is from 95.1 % to 96.8%, the 

mean specificity is from 86.3% to 92.8%, and the mean 

correct rate is from 93 .6% to 96.1 % when the K-fold 

number is varied from 2-fold to 10-fold. 

D. Single-scale vs. multi-scale recurrence 

It may be noted that we have previously extracted 

RQA features from the 3-lead VCG in the original scale 

for the identification of myocardial infarctions [7]. In 

addition, we utilized the DWT to decompose VCG 

signals into multiple wavelet scales, and compute RQA 

features from not only the original single scale but also 

multiple wavelet scales [5]. It is worth mentioning that 

only 4000 data points in the 3-lead VCG are used for the 

single-scale and DWT recurrence analysis due to the 

computational complexity. In this present paper, we 

further utilized wavelet packets decomposition for not 

only quantify multiscale recurrence dynamics but also 

resolve the computational issues for large-scale datasets. 

It may be noted that the 3-lead VCG of 16000 data points 

are utilized for recurrence quantification analysis in this 

present study with the use of WPD dyadic sampling. 
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Figure 4. The comparison of classification correct rates between single­

scale and multi-scale (i.e., DWT and WPD) recurrence analysis. 

As shown in figure 4, multiscale recurrence analysis 

(i.e., DWT and WPD) show better performances (in terms 

of correct rates) than the single-scale recurrence analysis. 

The correct rate using DWT recurrence analysis (93.2% 

from 10-fold cross validation) is 2.7% higher than the 

single-scale recurrence analysis (90.5% from 10-fold 

cross validation). Moreover, the proposed WPD 

recurrence analysis increases the correct rate about 2.9% 

from the previous DWT recurrence analysis. In summary, 

the correct rate for the identification of MI subjects is 

96.1 % in the WPD recurrence analysis, which is about 
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5.6% increase from the single-scale analysis. 

IV. DISCUSSION AND CONCLUSIONS 

Real-world physiological systems show high level of 

nonlinear and nonstationary behaviors in the presence of 

extraneous noises. Nonlinear dynamic methods provide a 

great opportunity to explore hidden patterns and 

relationships underlying complex cardiovascular systems. 

However, most of previous nonlinear dynamic methods 

only considered the time-delay reconstructed state space 

from 1-lead ECG signals to investigate cardiovascular 

dynamics. Few, if any, previous approaches considered 

disease-altered recurrence dynamics underlying long-term 

spatiotemporal VCG signals. 

In this present paper, we developed a novel multiscale 

recurrence approach to analyze the 3-lead VCG signals 

for the detection of Mis. Computer experiments 

demonstrate that the proposed approach yields better 

performances by delineating nonlinear and nonstationary 

behaviors in multiple wavelet scales. The multiscale 

recurrence analysis of VCG signals leads to a superior 

classification model that detects the myocardial infarction 

with an average sensitivity of 96.8% and specificity of 

92.8%, which is much better (i.e., 5.6% increase in terms 

of correct rates) than the single-scale recurrence analysis 

in previous investigations. 
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