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Abstract— Emotion recognition based on autonomic nervous
system signs is one of the ambitious goals of affective computing.
It is well-accepted that standard signal processing techniques
require relative long-time series of multivariate records to en-
sure reliability and robustness of recognition and classification
algorithms. In this work, we present a novel methodology
able to assess cardiovascular dynamics during short-time (i.e.
< 10 seconds) affective stimuli, thus overcoming some of
the limitations of current emotion recognition approaches.
We developed a personalized, fully parametric probabilistic
framework based on point-process theory where heartbeat
events are modelled using a 2nd-order nonlinear autoregressive
integrative structure in order to achieve effective performances
in short-time affective assessment. Experimental results show
a comprehensive emotional characterization of 4 subjects un-
dergoing a passive affective elicitation using a sequence of
standardized images gathered from the international affective
picture system. Each picture was identified by the IAPS arousal
and valence scores as well as by a self-reported emotional label
associating a subjective positive or negative emotion. Results
show a clear classification of two defined levels of arousal,
valence and self-emotional state using features coming from
the instantaneous spectrum and bispectrum of the considered
RR intervals, reaching up to 90% recognition accuracy.

I. INTRODUCTION

The study of human feelings represents an interesting
on-going topic which involves multidisciplinary expertise
including psychology, neurophysiology, and cognitive neu-
roscience. From a technical point-of-view, its outcome is
constituted by the development of computational systems
able to effectively map features extracted from human signs
(e.g. physiological signals, behavioral correlates, facial ex-
pressions, movements, etc.) into a well-defined "emotional
space", i.e., a multidimensional space in which each emotion
occupies a distinguished region. This challenging task is one
of the most ambitious objectives of the well-known technical
field of affective computing [1]. A commonly used emotional
space is defined by the Circumplex Model of Affects (CMA)
[2] which takes into account two main dimensions: Valence,
quantifying the degree of pleasantness, and Arousal, relating
to the "impact" of the emotion. Focusing on physiological
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signals, several emotion recognition methods using the elec-
trocardiogram (ECG), electrodermal response, respiration ac-
tivity, electromyography, were proposed in current literature
(see [3], [4] for reviews or details) as commonly associated
with the Autonomic Nervous System (ANS). Current suc-
cessful approaches require relative long-time series of multi-
variate recordings to accurately characterize the emotional
state of a subject. These constraints dramatically reduce
the impact on real applications of the affective computing
systems. Nowadays, in fact, the widespread diffusion of
digital media such as internet websites, television programs,
smartphone applications, etc. surely presents us with short-
time, even underlying, affective stimuli for which standard
signal processing techniques would be unable to perform
such a characterization because of low resolution or param-
eter estimation issues.

To overcome these limitations, in this paper we propose an
effective, personalized, and fully parametric emotion recog-
nition methodology able to perform an instantaneous cardio-
vascular assessment to recognize emotional swings (positive
or negative), as well as two main levels of arousal and
valence (low-medium and medium-high) using only heart
rate variability (HRV) assessments [5]. We have perfected
a novel stochastic model of heartbeat dynamics based on
point-process theory such that an inverse gaussian inter-beat
probability function is able to predict the waiting time of
the next heartbeat given a linear and nonlinear combination
of the previous events [6], [7]. The choice of including
past nonlinear information is justified by both physiologi-
cal reasons (the nonlinear neural signaling interactions and
integrations occurring at the neuron and receptor levels) and
experimental evidence [5], [8], [9]. In particular, concerning
emotion recognition, we recently demonstrated the crucial
role played by ANS nonlinear dynamics in arousal and
valence recognition [4]. Accordingly, we based our method-
ology on a quadratic Nonlinear Autoregressive Integrative
(NARI) model, which allows for nth-order polyspectra of
the considered signal [10] (see details in next section). The
algorithm combines the usage of the derivative RR series
in order to improve the achievement of stationarity [11]
with the system identification method based on local log-
likelihood [6]. Performances of the proposed point-process
nonlinear model were evaluated in four RR interval series
gathered from healthy volunteers undergoing a passive vi-
sual affective protocol using International Affective Picture
System (IAPS) [12] images, which are scored as valence and
arousal. Experimental results demonstrate that the proposed
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approach, novel in the field of affective computing, is able to
instantaneously assess the subject’s emotional state in short-
time events (i.e., 10 seconds IAPS images) using spectral
(linear) and bispectral (nonlinear) features.

II. MATERIALS AND METHODS

The methodology here proposed for cardiovascular assess-
ment of short-time affective stimuli can be seen as a further
advance of our previously proposed point-process models
of heartbeat dynamics (e.g. [6] [7]. The novel NARI model
takes into account the series of the RR derivatives in order
to improve the achievement of stationarity [11] along with a
nonlinear expansion whose parametric structure is estimated
by maximum log-likelihood optimization [6].

A. Point-Process Model of Heartbeat Nonlinear Dynamics
The point process framework primarily defines the prob-

ability of having a heartbeat event at each moment in
time. Defining t ∈ (0, T ], the observation interval, and
0 ≤ u1 < · · · < uk < uk+1 < · · · < uK ≤ T
the times of the events, we can define N(t) = max{k :
uk ≤ t} as the sample path of the associated counting
process. The left continuous sample path is defined as
Ñ(t) = limτ→ t− N(τ) = max{k : uk < t}. Given the
R-wave events {uj}Jj=1 detected from the ECG, RRÑ(t) =

uj−uj−1 > 0 denotes the jth RR interval, i.e., the previous
R-wave event before time t. Assuming history dependence
such that Ht = (uj ,RRj ,RRj−1, ...,RRj−M+1), the prob-
ability distribution of the waiting time t−uj until the next
R-wave event follows an inverse Gaussian (IG) model (see
[6] for related physiological and goodness-of-fit motivations).
For such an inter-beat probability function, we here propose
to model its first-moment statistic (mean) µRR(t,Ht, ξ(t))
as a NARI formulation:

µRR(t,Ht, ξ(t)) = RRÑ(t) + γ0
p∑
i=1

γ1(i, t) ∆RRÑ(t)(i)+

q∑
i=1

q∑
j=1

γ2(i, j, t) ∆RRÑ(t)(j)

where ∆RRÑ(t)(i) = (RRÑ(t)−i − RRÑ(t)−i−1), ξ(t) is
the vector of the time-varing parameters which includes
ξ0(t) > 0 representing the shape parameter of the (IG)
distribution. This choice of a second order NARI system
retains an important part of the non-linearity of the system.
Since µRR(t,Ht, ξ(t)) is defined in continuous time, we
can obtain an instantaneous RR mean estimate at a very
fine timescale (with an arbitrarily small bin size ∆), which
requires no interpolation between the arrival times of two
beats. The unknown time-varying parameter vector ξ(t) is
estimated by means of a local maximum likelihood method
[6]. We use a Newton-Raphson procedure to maximize
the local log-likelihood and compute the local maximum-
likelihood estimate of ξ(t). The model goodness-of-fit is
based on the Kolmogorov-Smirnov (KS) test and associated
KS statistics (see details in [6]). Once the order {p, q} is
determined, the initial NARI coefficients are estimated by the
method of least squares. In order to provide reliable results,

we preprocessed all the heartbeat data with a detection and
correction algorithm [13] to avoid errors in the dynamics
estimation due to peak misdetection and ectopic beats.
B. Feature Estimation from the Input-Output Kernels

It is possible to map a quadratic NARI model to an nth

order input-output Wiener-Volterra model [10]. Therefore,
the choice of a 2th-order autoregressive model allows, after
the input-output transformation of the kernels, the evaluation
of all the high order statistics (HOS) of the system, such
as the Dynamic Bispectrum and Trispectrum [14]. The
quadratic NARI model can be linked to the traditional input-
output Volterra models by using a specific relationships [10]
involving the Fourier transforms of the kernels of the non-
derivative model, Γ′1(f1) and Γ′2(f1, f2). In this work, we
chose to model the affective-related cardiovascular activity
with a cubic input-output Volterra using the following recur-
sive relationships:

H1(f) =
1

Γ′1(f)
(1)

H2(f1, f2) =− Γ′2(f1, f2)

Γ′1(f1)Γ′1(f2)
H1(f1 + f2) (2)

H3(f1, f2, f3) =− 1

6

∑
σ3

Γ′2
(
fσ3(1), fσ3(2)

)
Γ′1
(
fσ3(1)

)
Γ′1
(
fσ3(2)

)
×H2

(
fσ3(1) + fσ3(2), fσ3(3)

)
. (3)

1) Time and Frequency Domain Estimations: The time-
domain characterization is based on the first and the sec-
ond order moments of the underlying probability structure.
Namely, given the time-varying parameter set ξ(t), the
instantaneous estimates of mean RR, RR interval standard
deviation, mean heart rate, and heart rate standard deviation
can be extracted at each moment in time [6]. Moreover, given
the input-output Volterra kernels of the NARI model for the
instantaneous R-R interval mean µRR(t,Ht, ξ(t)), we can
compute the time-varying parametric (linear) autospectrum
[11], [15] of the non-derivative series:

Q(f, t) = 2(1− cos(ω))Sxx(f, t)H1(f, t)H1(−f, t)

− 3

2π

ˆ
H3(f, f2,−f2, t)Sxx(f2, t)df2 (4)

where Sxx(f, t) = σ2
RR. By integrating the eq. (4) in each

frequency band, we can compute the indices within the very
low frequency (VLF = 0.01-0.04 Hz), low frequency (LF
= 0.04-0.15 Hz), and high frequency (HF = 0.15-0.4 Hz)
ranges.

2) Higher Order Spectral Representation: In the pro-
posed short-time affective assessment, we included instanta-
neous HOS representations in order to retain phase relations
between frequencies and quantify deviations from linear-
ity, stationarity or Gaussianity [14], [16], [17]. Particular
cases of higher order spectra is the third-order spectrum
(Bispectrum), i.e. the Fourier transform of the third-order
cumulant sequence [14], [16], [17].The analytical solution
for the bispectrum of a nonlinear system response subject
to stationary, zero-mean Gaussian input can be found in
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Fig. 1. Instantaneous heartbeat statistics computed from a representative
subject (N. 1) using the proposed NARI model during the passive emotional
elicitation (two neutral sessions alternated to a L-M and a M-H arousal
sessions).The estimated µRR(t,Ht, ξ(t)) is superimposed on the recorded
R-R series. Below, the instantaneous heartbeat Power spectra evaluated in LF
and HF bands, the sympatho-vagal balance (LF/HF) and several bispectral
statistics are reported.

[17] which involves H1(f) and H2(f1, f2, t). Within the
triangular region of non-symmetry, we estimated several
features, such as mean and variance of bispectral invariants,
mean magnitude of the bispectrum, phase entropy, normal-
ized bispectral entropy and normalized bispectral squared
entropy. For a detailed review of these features, please refer
to [16] ). Moreover, we further evaluated the nonlinerar
sympatho-vagal interactions by integrating the bispectrum in
the appropriate frequency bands related to the combinations
of the LF and HF spectral limits [5].

C. Experimental Setup

The experimental protocol related to this work was exten-
sively described in [4]. Briefly, an homogeneous population
of 4 healthy subjects (age between 21 and 24, Patient Health
QuestionnaireTM score less than 5 [4]) were included in the
study. The affective elicitation was performed by 9 sessions
of IAPS images projected to a PC monitor. The sessions
alternated so-called neutral sessions and arousal sessions
which were divided into Low-Medium (L-M) and Medium-
High (M-H) classes, according to the IAPS arousal score
associated. Such sessions included 20 images eliciting an
increasing level of valence, which was also associated to
L-M (unpleasant) and M-H levels (pleasant). The overall
protocol utilized 110 images presented for 10 seconds each.
During the visual elicitation, following Einthoven triangle
configuration, the electrocardiogram (ECG) was acquired by
using a dedicate hardware module, i.e., the ECG100C Elec-
trocardiogram Amplifier from BIOPAC inc., with sampling
rate of 250 Hz.

D. Classification

For each subject’s RR interval series, the point-process
NARI model was applied and all the mentioned linear and
nonlinear derived features were extracted in order to define
the personalized feature set whose 80% was used for training
the pattern recognition algorithm, whereas the remaining
20% was associated to the test set. We performed 40-fold
cross-validation steps in order to obtain unbiased classifica-
tion results performed using the well-known Support Vector
Machines.

III. RESULTS

A tracking from a representative subject is shown in
fig. 1, whereas overall results are summarized in Tab. I.
The presence of nonlinear behaviors in the heartbeat series
was investigated by using a well-established time-domain
test [18] based on high-order statistics (number of laps:
M = 8, bootstrap replications: 500). Such a nonlinearity
test gave significative results (p < 0.05) on all of the
subjects demonstrating that such series are, indeed, coming
from a nonlinear system. Moreover, all the obtained KS
distances are below 0.0397, ensuring that the NARI model
well-performed a good prediction of the affective-related
changes of heartbeat dynamics. Concerning the emotional
pattern recognition, a two-classes problem was considered
for the arousal and valence considering the L-M and M-
H levels. The neutral sessions were associated to the L-M
class for the arousal task and not considered on the valence
task (neutrals could be equally associated to L-M or M-H
levels). Regarding the self-reported emotions, we used the
subjective labels (positive or negative) given by the self-
assessment making report, which was filled out for each
of the random seen image. For each cases, a comparative
evaluation of the accuracy was performed in order to further
validate the use of nonlinear features/model. First, in the
SVM classifier we used five linear-derived features: the mean
and standard deviation of the IG distribution (corresponding
to the novel probabilistic definitions of mean and standard
deviation of the RR intervals [6]), the LF and HF power,
and the LF/HF ratio. Then, all the nonlinear features derived
from the instantaneous bispectral analysis (see paragraph II-
B.2) were added to the linear-derived feature set for further
classification.

The recognition accuracy of the short-term positive-
negative emotions is improved in two cases and, anyhow,
is > 58% for all of the subjects, even exceeding 74%
of successfully recognized samples. Concerning the arousal
classification, the recognition accuracy of the short-term
emotional data is improved in all cases and, anyhow, is
> 78% for all of the subjects, even exceeding 92% of
successfully recognized samples. Finally, for valence classi-
fication the recognition accuracy of the short-term emotional
data is improved in two cases and, anyhow, is > 68%
for all of the subjects even exceeding 85% of successfully
recognized samples.
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TABLE I
EXPERIMENTAL RESULTS FROM THE POINT-PROCESS NARI MODEL

Emotion Arousal Valence
Subjects P-Value KS Dist Linear→Nonlinear Linear→Nonlinear Linear→Nonlinear

1 < 10−6 0.0362 65.45→63.64 78.45→78.46
√

84.37→81.25
2 < 10−6 0.0397 73.13→74.63

√
83.61→85.25

√
79.03→85.48

√

3 < 10−6 0.0321 66.15→58.46 87.69→92.31
√

75.00→73.44
4 < 0.01 0.0372 47.83→60.87

√
80.00→90.77

√
54.69→68.75

√

P-values are obtained from the nonlinearity test.

IV. DISCUSSIONS AND CONCLUSION

We presented a novel methodology able to assess in an
instantaneous, personalized, and automatic fashion whether
the subject is experiencing a positive or a negative emotion
(self-reported by the subject himself) along with two levels
(L-M and M-H) of elicited arousal and valence. Such as-
sessments are performed considering only the cardiovascular
dynamics through the RR interval series on short-time emo-
tional stimuli (< 10 seconds). The methodology proposed
here represents a pioneering approach in the current literature
and can open new avenues in the field of affective computing.
Standard signal processing methods, in fact, would be unable
to give reliable and effective results because of resolution
or estimation problems. We defined an ad-hoc affective
computing framework based on the point-process theory and
on NARI modeling of the IG mean using the derivative RR
series [11] to improve the tracking of the affective-related
non-stationary heartbeat dynamics.

The inherent nonlinearties of the cardiovascular systems
[19] were confirmed by our experimental results. According
to the nonlinearity test, in fact, all the RR series resulted to be
the outputs of a nonlinear system. Moreover, the inclusion of
the instantaneous nonlinear features in the system improved
the accuracy in 8 out of the 12 considered cases (among all
subjects for self-emotion, arousal, and valence recognition).
Unlike other paradigms developed in the literature for esti-
mating human emotional states [3], our novel approach is
purely parametric, fully autoregressive and the analytically
derived indices can be evaluated in a dynamic and instan-
taneous fashion allowing for an affective characterization
using nth-order input-output high order statistics such as
the instantaneous bispectrum and trispectum. The framework
proposed here is fully personalized, i.e. it does not require
data from representative population of subjects. This is why
the presented results, even if with only a very limited number
of subjects, are very important and promising.

In conclusion, using only the heartbeat dynamics, we were
able to effectively distinguish the two fundament levels of
both arousal and valence, thus allowing for the assessment
of four basic emotions [2] as well as the personal cogni-
tive association related to a positive and negative emotion.
Besides affective computing, these achievements could have
an highly relevant impact also in the mood disorder psy-
chopathology diagnosis and treatment (mood disorder pro-
duces an altered emotional response), and neuro-economics.
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