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Abstract— The atrioventricular (AV) node plays a central role
during atrial fibrillation (AF). We have recently proposed a
statistical AV node model defined by parameters characterizing
the arrival rate of atrial impulses, the probability of an impulse
choosing either one of the dual AV nodal pathways, the refrac-
tory periods of the pathways, and the prolongation of refractory
periods. All model parameters are estimated from the RR
series using maximum likelihood (ML) estimation, except for
the mean arrival rate of atrial impulses which is estimated
by the AF frequency derived from the f-waves. The aim of
this study is to present a unified approach to ML estimation
which also involves the shorter refractory period, thus avoiding
our previous Poincaré plot analysis which becomes biased. In
addition, the number of RR intervals required for accurate
parameter estimation is presented. The results show that the
shorter refractory period can be accurately estimated, and that
the resulting estimates converge to the true values when about
500 RR intervals are available.

I. INTRODUCTION

During atrial fibrillation (AF), a large number of atrial

impulses bombard the atrioventricular (AV) node and some

of them are blocked. Even if the important role played by the

AV node is widely recognized, the relationship between atrial

and ventricular rates and AV node has not been thoroughly

studied. Various models of the AV node during AF have

been proposed, either models for simulation or models for

parameter estimation involving observed data. Simulation

models aim at explaining AV nodal characteristics [1] or the

effect of pacing [2], [3]. Although such models can offer de-

tailed characterization of the underlying electrophysiological

dynamics, they are unsuitable for parameter estimation due to

problems of uniqueness as a consequence of the large number

of parameters which must be subjected to optimization.

Recently, we proposed a statistical model of AV nodal

function during AF which lends itself well to ECG-based

parameter estimation [4], [5]. The model is defined by a

small set of parameters which characterizes the arrival rate of

atrial impulses, the probability of an impulse choosing either

one of the dual AV nodal pathways, the refractory periods

of the pathways, and the prolongation of refractory periods.

The parameters were estimated from the RR series using

maximum likelihood (ML) estimation, except for the mean

arrival rate of atrial impulses which was estimated by the

AF frequency derived from the f-waves [6], and the shorter

refractory period estimated from Poincaré plot analysis.
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The aim of this study is to present a unified approach

to ML estimation which also involves the shorter refractory

period of the AV node, thus avoiding the Poincaré-based

analysis which may produce unreliable and biased estimates.

Another aim is to determine the number of RR intervals re-

quired for accurate parameter estimation, simulating different

scenarios.

II. METHODS

A. Definition of the AV node model

In the present model, the AV node is treated as a lumped

structure which accounts for concealed conduction, relative

refractoriness, and dual AV nodal pathways. Atrial impulses

are assumed to arrive to the AV node according to a Poisson

process with mean arrival rate λ. Each arriving impulse is

suprathreshold, i.e., the impulse results in ventricular activa-

tion unless blocked by a refractory AV node. The probability

of an atrial impulse passing through the AV node depends on

the time elapsed since the previous ventricular activation t.

The refractory period is defined by both a deterministic part

τ and a stochastic part, the latter modeling prolongation due

to concealed conduction and/or relative refractoriness and

assumed to be uniformly distributed over the interval [0, τp].
Hence, all atrial impulses arriving to the AV node before the

end of the refractory period τ are blocked. Then follows

an interval [τ, τ + τp] with linearly increasing likelihood

of penetration into the AV node. Finally, no impulses can

be blocked if they arrive after the end of the maximally

prolonged refractory period τ + τp.

The mathematical characterization of refractoriness of the

i:th pathway (i = 1, 2) is thus defined by the positive-valued

function βi(t),

βi(t) =











0, 0 < t < τi
t− τi
τp
, τi ≤ t < τi + τp

1, t ≥ τi + τp,

(1)

where t denotes the time elapsed since the preceding ventric-

ular activation. In (1), the deterministic part of the refractory

period is assumed to have a length either of τ1 or τ2 (τ1 ≤

τ2), depending on the penetrating pathway. The probability

of an atrial impulse to take the pathway with the shorter

refractory period τ1 is equal to α, and accordingly the other

pathway is taken with probability (1− α).
Hence, non-blocked atrial impulses occur according to

an inhomogeneous Poisson process with intensity function

λβi(t), where βi(t) characterizes the time-dependent refrac-

toriness and is either equal to β1(t) or β2(t), depending

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 2567



on the pathway taken by the atrial impulse. With the as-

sumption that AV conduction time is incorporated into βi(t),
ventricular activations immediately occur following a non-

blocked atrial impulse. Consequently, ventricular activations

also occur according to an inhomogeneous Poisson process

with intensity function λβi(t).
For this model, the time intervals xi between consecutive

ventricular activations, i.e., corresponding to the RR inter-

vals, must be independent. It can be shown that the joint

PDF is given by [4]

px(x1, x2, . . . , xM ) =
M
∏

m=1

(αpx,1(xm) + (1 − α)px,2(xm)),

(2)

where M is the total number of intervals, and px,i(xm), i =
1, 2, is given by

px,i(x) =



























0, x < τi

λ(x− τi)

τp,i
exp

{

−λ(x− τi)
2

2τp,i

}

, τi ≤ x < τi + τp,i

λ exp

{

−λτp,i

2
− λ(x− τi − τp,i)

}

, x ≥ τi + τp,i.

(3)

To account for the interdependence between successive

RR intervals, the deterministic part of the refractory period

is assumed to depend on the preceding RR interval, so that a

longer RR interval is followed by a longer refractory period,

and vice versa.

B. Model parameter estimation

Since the property of statistical independence is not fully

valid for observed RR intervals, preprocessing of the original

RR interval series is needed to reduce the interdependence

of successive RR intervals. During AF the first lag of the RR

interval correlation is significant, whereas it is negligible for

larger lags. Hence, to reduce this interdependence between

subsequent RR intervals, approximate decorrelation of the

RR series is obtained using xm = RRm − aRRm−1, where

a is the smallest value in the interval [0, 0.5] that makes the

first lag negative.

All model parameters, except λ, are estimated from the

RR intervals using ML estimation.

The atrial impulses are assumed to arrive to the AV node

according to a Poisson process with rate λ. An estimate of

λ is obtained by [5]

λ =
λAF

1− δλAF

, (4)

where λAF is the dominant AF frequency estimated from the

ECG (independently of the AV node parameters), and δ is

minimum time interval between successive impulses arriving

to the AV node.

The model parameters α, τmin
1
, τmin

2
, τp,1, and τp,2 are

estimated by jointly maximizing the log-likelihood func-

tion with respect to θ =
[

α τmin
1

τmin
2

τp,1 τp,2
]T

.

The corresponding parameters of a single pathway model,
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Fig. 1. Histogram of the transformed RR series and superimposed the
true (solid line) and estimated PDFs, with (dashed line) and without (dotted
line) the iterative procedure for removing incorrect RR intervals. See text
for details.

[

α τmin
1

τp,1
]T

are also estimated. The Bayes informa-

tion criterion is used to determine the most appropriate

model [5]. Since no closed-form solution could be found for

θ̂, combined with the fact that the gradient is discontinuous,

the multi-swarm particle swarm optimization (MPSO) is in

the present study proposed for optimizing the log-likelihood

function. Briefly, a multi-initialization with N concurrent

swarms is employed in MPSO [7], [8]. Each swarm is

moved within a search area to find the optimal solution.

After a certain number of optimization epochs, particles are

exchanged between swarms to avoid local maxima.

Given the definition of px,i(x) in (3), the estimate of τmin
1

is closely related to the shortest RR interval in the series,

thus making the handling of artifacts (premature ventricular

contractions, misdetected beats, etc.) very important. To re-

duce the influence of occasional incorrect RR intervals in the

series, i.e., RR intervals obtained from artifacts, an iterative

procedure is employed. First, 1% of the shortest intervals

are removed from the decorrelated RR series x, and ML

estimation is performed on the truncated series x̃0. Since x̃0

is assumed to be free from incorrect RR intervals, the initial

estimate θ̃ =
[

α(0) τmin
1

(0) τmin
2

(0) τp,1(0) τp,2(0)
]T

can serve as a reference. The removed RR intervals are then

reversed to the truncated series one by one in order of size,

so that x̃i = [x̃i−1 x(i)] where x(i) is the longest interval

removed from x̃i−1; ML estimation is performed for each

x̃i. The estimates corresponding to the maximum value of

the log likelihood function are chosen as the correct ones.

Figure 1 shows the histogram of the transformed RR series

and the true and estimated PDFs superimposed, with and

without the iterative procedure for removing incorrect RR

intervals. It can be noted that when no RR intervals are

removed, the estimated PDF is far from the true one.
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Fig. 2. Mean and standard deviation of estimates (solid and dashed black

lines) obtained from simulated RR series with λ = 7 Hz, τmin
1

= 0.35 s,

τmin
2

= 0.55 s, α = 0.1 s, τp,1 = 0.1 s, and τp,2 = 0.15 s. The true values
are superimposed (red line).

C. Simulated data

Simulated 30-min RR interval series were generated using

the AV node model introduced in [5]. We used 8 different

parameter settings (100 runs per setting) for which τmin
1

spanned from 0.25 to 0.45 s, prolongations of refractory

period (τp,1 and τp,2) from 0.05 to 0.5 s, λ from 6 to 7 Hz

and α from 0.1 to 0.8. As the simulations provided only RR

series, λ was supposed to be known. The mean and variance

of the parameter estimates were computed. The accuracy of

the parameter estimates was tested by applying the estimator

to increasing lengths of the RR series.

III. RESULTS

Figure 2 shows the mean and standard deviation of the

estimated parameters over one-hundred realizations for a

certain parameter setting for different lengths of the RR

series. The estimates converge to the true values fast, i.e.,

for an RR series with about 500 intervals, corresponding to

about 6 minutes for this parameter setting.

Figure 3 compares the results of estimation for two differ-

ent parameter settings, differing only in prolongation of τp,1
and τp,2. The probability of choosing the slow pathway (α) is

very low (equal to 0.1). In the first setting (left panels), τp,1
does not converge, however, its relevance for the estimation

of the true PDF is obviously small because of the low number

of atrial impulses going through the slow pathway. In the

bottom part, the histogram of the transformed RR series

and superimposed the true (solid line) and estimated PDFs

(dashed line) are shown. It can be noted that the true and

the estimated PDFs are almost identical. It can also be noted
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Fig. 4. Comparison of τ̂min
1

obtained with either the Poincaré-based
analysis (empty circles) or ML estimation (full circles). The median of

τ̂min
1

, obtained from 10 realizations, is shown as a function of analyzed RR
intervals, (a) without any artifacts and (b) with artifacts inserted. The true

value of τmin
1

is indicated by the dashed line.

that the estimate of τmin
1

converges in a few hundreds RR

intervals even if α is close to zero.

Figure 4 shows the median of τ̂min
1

obtained with Poincaré-

based analysis [5] (empty circles) or ML estimation as

proposed in this paper. It is obvious from Fig. 4 that the

performance of ML estimation is superior since the resulting

estimates are much closer to the true value, irrespective of if

artifacts are present in the RR series or not. The procedure

to simulate artifacts is described in [5].

Figure 5 shows the normalized error between the true PDF

and the estimated one, averaged over all studied parameter

settings. The error drops below 0.1 when the RR series is

longer than 500 samples.

IV. DISCUSSION AND CONCLUSIONS

In this study, a unified approach to ML estimation for

our recently proposed AV node model is presented, i.e., all

model parameters, except the arrival rate of atrial impulses,

are estimated from the RR intervals using ML estimation.

The simulations indicate that about 500 RR intervals are

generally needed for the parameter estimates to converge to

their true values. A comparison of ML estimation of τmin
1

to Poincaré-based analysis showed that the former approach

performs better.
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Fig. 3. Mean and standard deviation of estimates (solid and dashed black lines) obtained from two parameter settings, differing only in the refractory
period prolongations, being for the left column τp,1 = 0.5 s, and τp,2 = 0.15 s, whereas for the right column τp,1 = 0.05 s, and τp,2 = 0.4 s, see text for
details. The bottom panels show the histogram of the transformed RR series, with the true (solid line) and estimated PDFs (dashed line) superimposed.
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Fig. 5. Mean and standard deviation of the normalized error computed
between the true PDF and the estimated one, averaged for all the parameter
settings.

Finally, it deserves to be pointed out that the pro-

posed model provides non-invasive characterization of the

AV node—a useful property when assessing antiarrhythmic

drugs, i.e., to assess their efficacy in the single patient, and

for AV node ablation treatment.
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