
  

 

Abstract—Lung sound auscultation in non-ideal or busy 

clinical settings is challenged by contaminations of 

environmental noise. Digital pulmonary measurements are 

inevitably degraded, impeding the physician’s work or any 

further processing of the acquired signals. The task is even 

harder when the patient population includes young children. 

Agitation and/or crying are captured into the recordings, 

additionally to any existing ambient noise. This study focuses on 

characterizing the different types of signal contaminations, 

expected to be encountered during lung sound measurements in 

non-ideal environments. Different noise types were considered, 

including background talk, radio playing, subject’s crying, 

electronic interference sounds and stethoscope displacement 

artifacts. The individual characteristics were extracted, 

discussed and further compared to characteristics of clean 

segments. Additional exploration of discriminatory features led 

to a spectro-temporal signal representation followed by a 

standard SVM classifier. Although pulmonary and ambient 

sounds were both dominant in most sound clips, such a complex 

representation was deemed to be adequate, capturing most of 

the signal’s distinguishing characteristics. 

I. INTRODUCTION 

Lung sound auscultation has been a valuable part of 
clinical assessment for patients. It is usually the first tool 
used by primary care providers as it can reveal lung diseases 
in a noninvasive and cost-effective manner simply by 
listening to the chest sounds. Respiratory and lung diseases 
are a major public health concern in both industrial and 
developing countries, though the latter usually lacks 
experienced or well-trained clinical personnel. The challenge 
in such settings is the high inter observer variability in 
interpreting sound content as captured by the stethoscope, as 
well as the many different sources of noise contamination. In 
contrast to well-controlled clinical environments where noise 
is of little or no concern, when auscultation is performed in 
outpatient or busy clinics, the signal can be significantly 
corrupted or degraded by environmental sounds, thus 
impeding the work of the physician. In addition, when 
pediatric auscultation is considered, agitation, movement and 
cry can be most prominent throughout auscultation.  

Computer aided analysis offers the advantages of 
meticulous, offline revision and further processing of the 
recorded signal, towards noise reduction and identification of 
events-indicators of possible pulmonary disease or 
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dysfunction. A lot of work has been published on lung sound 
signal denoising, but mostly focused on reducing the heart 
sounds or identifying adventitious events. To the best of our 
knowledge, limited literature has been found to address 
pediatric auscultation in non-ideal settings. Bahoura etal. [1] 
proposed a denoising technique using Wavelet Packets on 
white and instrumentation/ventilation noise; Suzuki etal. 
implemented an adaptive filter with the use of a reference 
recording, applied on an adult recording exposed in 
background radio talking [2]. In order to better understand 
the nature of these potential contaminations, the current 
study focuses on characterizing different types of noise being 
captured during digital auscultation, when subjects are young 
children and data are acquired in busy non-ideal 
environments. Signal contaminations considered here 
involve ambient noise, background talking, crying, electronic 
interference and artifacts produced by intentional or 
unintentional stethoscope displacements.  

II. METHODS 

Data were obtained from a pool of lung sound recordings 
acquired in a children’s hospital in Lima, Peru. More 
information on the acquisition protocols can be found in [3]. 
53 subjects (control cases) were considered in the current 
study. A digital recording stethoscope of ThinkLabs Inc. 
connected to an MP3 player at 44.1 KHz sampling rate was 
used for the acquisition. All sounds were then downsampled 
to 8 KHz. Short sound segments with duration of 0.5-3 sec 
were manually extracted from various recording segments 
within the signal, including left/right anterior/posterior 
inferior/superior sites. Samples, consisting of noise- and lung 
sound-related content, where the latter contained no kind of 
adventitious events, were divided into 5 categories. The first 
one, CleanB, included ‘clean’ lung sound signal. These 
segments were picked from control patient cases with limited 
background or other noise. Four further groups were formed 
to capture distinct sources of signal corruption: 
BackgroundN, representing any background noise such as 
background talking, distant children crying, radio playing or 
children toys’ sounds; CryN including intervals of crying 
coming from the child under examination; InterferenceN, 
with sound segments contaminated by mobile or other source 
of electronic interference (buzzing) and finally StethMoveN, a 
group capturing intentional displacement of the stethoscope 
during the recording, i.e. when the physician changed 
location of recording site, or unintentional displacement, e.g. 
when subject appeared to be agitated. Note that StethMoveN 
group contained limited lung sounds contents which were 
very prominent in all other categories.  All isolated segments 
were processed into short 500ms-windows with 50% 
overlap. 
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A. Spectrum Characterization 

The short-time 2
14

-point Fast Fourier Transform (FFT) 
was calculated for each sound segment, smoothed with a 
5

th
 order Butterworth filter with cutoff frequency at 60 Hz 

and averaged over all windows. From the smoothed 
amplitude spectrum, a number of features were extracted: 

 Peak Width (PW). The maximum spectrum peak was 
extracted and its width measured at 75% of its 
corresponding height. To avoid confusion with high-
frequency peaks (see profile of CryN in Fig. 1), the 
search for the maximum peak was restrained to 
frequencies below 200 Hz. 

 Spectrum Slope (SL100). It has been previously 
shown [4] that the spectrum produced by lung sound 
recordings decays exponentially with frequencies 
higher than 75 Hz. These findings came from adult 
recordings with controlled environmental noise. In 
our case this threshold was found to be closer to 100 
Hz and so it was increased accordingly.  The 
spectrum P, expressed in logarithmic scale as 20∙log 
(P/Pthr), with Pthr = 5∙10

-5
, was fit with a linear 

regression line and its slope calculated in dB/octave.  

 Power Ratio (PR), calculated as the total estimated 
power versus the power of the regression line. The 
estimated power at frequency f was expressed as Pest 

(f) = Pthr∙ f / fmax , with fmax  the point where the 
regression line crosses the frequency axis, as 
proposed in [4]. The power of the regression line 
depicts the area underneath the linear regression line 
described above. 

 Low-to-High Frequency Ratio (LHFR500), the ratio 
of average squared power spectrum for frequencies 
below 500 Hz versus the average power at 
frequencies above 500 Hz. Lung sound content 
containing no adventitious events has been found to 
be concentrated at low frequencies, and thus, this 
metric was expected to capture frequency content 
not related to any respiratory or heart sounds [5,6].  

B. Harmonicity 

In a spectrum amplitude representation of a signal, when 
spectral components are found at integer multiples of a 
common low frequency- the fundamental frequency, F0- they 
are said to be harmonically related and provide evidence of 
the harmonic profile of the sound excerpt. In complex 
sounds like the ones used in this study, possible harmonics 
are expected at roughly- not necessarily exact- integer 
multiples of a F0. The following algorithm was used to 
capture harmonicity of short term bursts of high energy 
content: In step 1, the transient events with broadband 
energy were identified as follows. The short-time Fourier 
transform of the signal was calculated using 50ms windows 
with 50% overlap. The spectrum of each segment was then 
averaged across frequencies above 1 KHz. This cutoff was 
chosen to exclude most of lung sound-specific information. 
All instances with non-negligible power were then isolated 
from the resulting time series, revealing locations of high 
frequency content. In step 2, a 50ms window centered at 

each time-peak location was extracted from the original 
sound waveform, and its 2

9
-point FFT was computed. From 

the calculated spectrum, a sequence of at most 8 peaks was 
identified, excluding the very first spectrum peak. If at least 
80% of the spectral peaks formed a harmonic stack with 20 
Hz tolerance, then the time clip was considered to be 
harmonic. This process was repeated for all time-peak 
locations of step 1. 

C. Spectral and Temporal Modulations 

Inspired by recent psychophysical and physiological 
findings on the way the brain processes sound information 
travelling from the inner ear all the way to the auditory 
cortex, a multi-resolution analysis was invoked [7]. The 
sound signal, s(t), was processed through a bank of 128 
overlapping constant Q band-pass filters. The filters, 
asymmetric with central frequencies uniformly distributed in 
logarithmic scale covering 5.3 octaves, resemble the 
processing done in the basilar membrane. After a high and 
low pass operator mimicking the hair cell stage, the auditory 
nerve output was spectrally sharpened and integrated over 
short windows, resulting in a time-frequency representation 
y(t, f), which is effectively a spectrogram-like representation 
of the input sound signal s(t).  The next stage, representing 
the higher central processing in the auditory cortex, is 
mathematically expressed by a 2D affine Wavelet Transform 
of the spectrogram y(t, f). The spectral and temporal 
modulations of the auditor spectrogram were calculated 
using a bank of Gabor like modulation-selective wavelet 
filters. Each of these filters was tuned to a specific temporal 
(rates, ω, in Hz) and spectral (scales, Ω, in cycles/octave or 
c/o) modulation. A bank of directional (±) selective filters 
was used to capture content changing in positive or negative 
phase, with a corresponding spectro-temporal impulse 
response STRF±(t, f, ω, Ω). The final spectro-temporal 
representation forms the cortical response of the input 
spectrogram y(t, f) and was calculated as: 

cr±(t, f, ω, Ω)=y(t, f) *t,f  STRF±(t, f, ω, Ω)      (1) 

using *t,f to denote double convolution in time and 
frequency. Throughout the paper, the magnitude of the 
cortical response has been used. The time axis was then 
integrated over windows of 500 ms, yielding a scale-rate-
frequency representation, S-R-F, which is then averaged 
across all windows: 

srf±( ω, Ω, f ) = ∑n ∑ τ  cr± (τ, f, ω, Ω) /( Nn ∙ Nτ),    (2) 

where ∑τ denotes integration over each short time 
window of size Nτ, and ∑n integration over all Nn windows. 
The modulation selective filters were created using 31 
distinct rates ω, and 31 scales Ω,  all equally spaced in 
logarithmic axis, with ω ∈ [4, 256] Hz; Ω ∈ [0.125, 8] c/o. 

D. Classification 

The supervised learning algorithm Support Vector 
Machines (SVM), with a radial basis function (RBF) kernel, 
was invoked [8] to capture the differences among types of 
noise using the S-R-F representation. Data, transformed by 
the kernel function to a linearly separable feature space, were 
split into training and testing examples. During the training 
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phase a hyperplane margin is constructed to separate 
examples of the two groups; during the testing phase, data 
were classified according to their distances from the 
hyperplane. For our multiclass problem, 10 binary SVMi,j 
were constructed and trained using examples from every pair 
of groups i, j, where i≠j and SVMj,i ≡ SVMi,j. A test example 
k was tested on all SVMi,k, i≠k and classified according to 
majority vote. Bias was removed by randomizing selection in 
the event of a tie. To reduce the high dimensional feature 
space, tensor Singular Value Decomposition (SVD) was 
applied before classification. Data were unfolded along each 
feature dimension and the principal components were 
calculated from the covariance matrix. Components 
capturing no less than 99% of the total variance were kept to 
form the reduced feature space dimensions. The 
dimensionality was therefore reduced from 31x62x128 to at 
most 6x1. 

III. RESULTS  

A. Signal Characteristics 

Twenty reference samples were considered for each one 
of the five sound categories listed in section II. Segments 
were processed into short time windows, as discussed earlier, 
to extract the individual spectrum characteristics. The mean 
spectrum profile of each class is shown in Fig. 1(left) and 
representative examples and spectrum slope plots in Fig. 1 
(right). Mean feature values for each group are reported in 
Table I. Samples of group CryN showed a high peak width, 
PW, and a significant content concentration in higher 
frequencies, achieving a very small LHFR500. Spectrum slope 
value, SL100, was not very informative in this group since 
crying profiles were far from being exponentially decaying 
with frequencies above 100 Hz. This fact was also depicted 
in the high PR value.  Cases of the StethMoveN group 
showed a steep spectrum slope with increased power ratio 
when compared to CleanB or InterferenceN groups. The 
CleanB group yielded the lower PW, SL100, PR and PLN 
values, with spectrum content mostly concentrated below 
500 Hz. As expected, the BackgroundN group being heavily 
contaminated with talking and crying revealed increased 
LHFR500 compared to group CleanB, where most spectrum 
contents were pulmonary-related and in lower frequencies. 

B. Harmonic Profile 

The spectral features presented provided general 
evidence of the peculiarities of the distinct noise types. A 
more detailed look into the profiles of InterferenceN noise 
and StethMoveN artifacts showed isolated or repeated short-
time bursts of broadband energy. Listening to these burst of 
energy in samples of electronic interference a certain 
‘musicality’ emerged, an attribute of signal’s harmonicity. 
Such a characteristic is neither heard nor expected for sounds 
in the StethMoveN group. The reader is referred to Fig. 1(d) 
where arrows indicate the evident harmonic profile of a 
StethMoveN case. The detection algorithm presented in 
section II.B was applied to first identify transient events of 
the time-frequency representation and then decide if a 
harmonic structure was exhibited. Considering the detected 
harmonic segments of group InterferenceN from all case 

files, a consistent fundamental frequency was found at 
215.09Hz (±2.76Hz) after rejecting 10% of possible extreme 
outliers. There was no obvious harmonic structure observed 
for the cases of group StethMoveN. Figure 2 shows the 
spectrogram of two case examples, where the identified 
bursts of energy were marked within black margin regions. 
Clips exhibiting a harmonic structure are shown with an ‘X’. 

TABLE I.  AVERAGE SPECTRUM FEATURES PER SOUND GROUP 

Group 
Spectrum Features * 

PW SL100 PR LHFR500 

CleanB 136.65 -9.14 2534.12 27857.58 

Back-

groundN 162.72 -10.06 10156.26 14702.98 

CryN 209.28 -10.06 7055.07 2581.76 

Interfe-

renceN 163.70 -9.76 5141.87 9140.24 

Steth 

MoveN 116.63 -11.78 26453.94 8254.19 

*PW: peak width, SL100: spectrum slope, PR: power ratio, LHFR500: low-to-high frequency ratio. 

Figure 1.  Left panels: average spectrum profile of all sound group. Shaded 

regions reflect the standard deviation among group cases. Right panels: 

logarithmic spectrum plot of selected case examples. The dark line 

represents the linear line fit to the spectrum and the slope shown in legend.  

C. Classification of Noise Signals 

Spectral and harmonicity features discussed revealed 
distinct characteristics of the sound samples belonging to 
each category. Further inquiry on whether the peculiarities of 
the sound signals could adequately distinguish between the 
different types of noise led to an SVM classifier. Since most 
groups share common lung-related content, and sounds 
belonging in CleanB and CryN groups share a lot with 
BackgroundN group, the classification task was expected to 
be non-trivial. The spectral and temporal modulations of 
each segment were captured using the reduced S-R-F data 
representation described in section II.C. Examples were 
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tested through all respective binary SVMs and the label 
decision was based on majority vote. Average results and 
standard deviation over 10 independent runs of a 5-fold cross 
validation, (80% training data and 20% test data) are shown 
in Table II. The results depicted the inherited difficulty in 
discrimination. See for example the confusion in columns 
CleanB and BackgroundN since background noise and lung 
sound content were apparent in most sound clips. Note that 
samples in InterferenceN group were in majority 
overwhelmed by background noises containing a weaker 
interference component. Also, both InterferenceN and 
StethMoveN samples were characterized by transient bursts of 
broadband energy. Those facts added extra confusion to the 
classification scheme, and were also depicted in the table of 
results.  

IV. CONCLUSION 

A number of noise factors such as crying, talking, 

background radio playing, patients movement etc., are rarely 

or never considered in adult auscultation and well controlled 

clinic environments, on which the majority of published 

work relies. However, pediatric auscultation performed in 

busy environments is inevitably challenged by all the 

aforementioned factors and it was the purpose of this paper 

to present, describe and analyze the different signal 

contaminations expected to be encountered in such settings. 

A number of feature characteristics were extracted and 

revealed distinguished patterns for the different noise 

categories. Although signals from all five sound groups 

shared a lot of common information, i.e. the actual lung 

sound content and the background or environmental noise, 

the features presented above, such as the spectral width, the 

content concentration within frequency bands, a possible 

harmonic structure, revealed distinct spectrum characteristics 

for each specified group. An augmented spectro-temporal 

representation further supported the statement that noise 

contaminations encountered in such recordings have distinct 

features and can be discriminated. For example a strong 

harmonic profile can reveal probable interference noise; or 

high energy contents within the range of (200-600) Hz can 

suggest significant cry contaminations and so on.  

Incorporating knowledge of all those noise features into 

computer aided diagnostic tools could contribute to better 

discrimination between adventitious events and noise 

contaminations, thus, leading to improved and more robust 

automated signal analysis and processing techniques. 
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TABLE II.  AVERAGE (±STD) CLASSIFICATION RESULTS 

True 

Label 

Output  

CleanB 
Back- 

groundN 
CryN 

Interfe-

renceN 

Steth 

MoveN 

CleanB 

95.00 
(±5.77) 

2.00 
(±2.58) 0  

2.00 
(±3.50) 

1.00 
(±3.16) 

Back-

groundN 

3.00 
(±3.50) 

91.00 
(±7.75) 0 

3.50 
(±5.30) 

2.50 
(±2.64) 

CryN 
1.50 

(±3.37) 
2.00 

(±3.50) 
93.50 

(±5.30) 
1.50 

(±2.42) 
1.50 

(±3.37) 

Interfe-

renceN 

2.50 
(±2.64) 

5.50 
(±5.50) 

2.00 
(±3.50) 

85.50 
(±6.85) 

4.50 
(±4.97) 

Steth 

MoveN 

3.50 
(±4.12) 

4.00 
(±4.59) 

0.50 
(±1.58) 

1.00 
(±2.11) 

91.00 
(±6.58) 

Figure 2.  Selected case examples of InterferenceN(a) and StethMoveN(b) 

groups. The time waveforms (top panels) and corresponding spectrograms 

(bottom panels) are shown. Black dashed lines mark the identified transient 

events of broadband energy. Segments found to exhibit a harmonic 

structure are noted with a ‘X’. 

2554


	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

