
 

 

 

 

Abstract— Emerging multi-electrode-based brain-machine 

interfaces (BMIs) and large multi-electrode arrays used in in 

vitro experiments, enable recording of single neuron’s activity 

on multiple electrodes and allow for an in-depth investigation 

of neural preparations, even at a sub-cellular level. However, 

the use of these devices entails stringent area and power 

consumption constraints for the signal-processing hardware 

units. In addition, the high autonomy of these units and an 

ability to automatically adapt to changes in the recorded neural 

preparations is required. Implementing spike detection in close 

proximity to recording electrodes offers the advantage of 

reducing the transmission data bandwidth. By eliminating the 

need of transmitting the full, redundant recordings of neural 

activity and by transmitting only the spike waveforms or spike 

times, significant power savings can be achieved in the majority 

of cases. Here, we present a low-complexity, unsupervised, 

adaptable, real-time spike-detection method targeting multi-

electrode recording devices and compare this method to other 

spike-detection methods with regard to complexity and 

performance. 

I. INTRODUCTION 

Extracellular monitoring of the electrical activity of 
different neural structures has allowed for a better 
understanding of the behavior of neural cells and networks. 
The information is passed along neural networks in the form 
of electrical activity, i.e., voltage pulses, known as action 
potentials or spikes. When recording spikes with extracellular 
electrodes, their temporal and spatial characteristics, as well 
as the specific neuron they originated from can, to a certain 
degree, be determined by employing dedicated signal 
processing. This process is known as spike sorting. Different 
neural recording devices have been developed, most of which 
are able to sense the activity of a neuron solely on one single 
electrode. However, it has been shown that the recording of 
multi-unit activity on multiple electrodes strongly increases 
spike-sorting performance [1], [2]. Devices featuring the 
required small inter-electrode distances include needle 
electrodes and high-density microelectrode arrays 
(HDMEAs) [3] - [6].  

Power storage capacity is very limited in implantable 
neural-recording devices, or so-called brain-machine 
interfaces (BMIs), and tight constraints are imposed on 
power consumption due to the general preference for wireless 
over wired communication between a BMI and the remainder 
of the system. The power constraints in these devices become 
even tighter with the ever-increasing number of readout 
channels. Considering that during most of the time neurons 
are inactive, and, that in most cases the vast majority of the 
recorded neural data represents background noise, extracting 
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and sending out only spike waveforms can significantly 
decrease the necessary data transmission bandwidth. 
Therefore, performing spike classification immediately after 
the detection would further reduce system bandwidth. 
However, reliable spike-classification methods are highly 
complex and would entail massive power consumption (>3 
times, [7]). On the other hand, reliable spike detection can be 
achieved with methods of comparably low complexity and an 
extraction of the spike waveforms allows for spike 
classification to be performed at the other end of the 
transmission line, on the host-machine. Moreover, when the 
identity of the spiking neurons is not needed, transmitting 
only the spike times ensures minimal power consumption. 

Among the existing large electrode arrays that are used 
for in vitro experiments, the number of readout channels is 
rapidly increasing (e.g., 4096, [4]) in the attempt to 
simultaneously monitor the activity of a large number of 
cells. Here, a reliable spike detection performed on chip 
would ensure a decrease in data-handling complexity and 
system bandwidth, making the systems more flexible and 
easier to use. 

As the recorded data are non-stationary (i.e., changes in 
the recording environment cause changes in the recorded 
signals), the detection method must be adapted to potential 
changes. Detection methods that rely on a priori knowledge 
of the spikes’ average waveforms (templates), such as the 
template-matching filter-based, Integral Transform (IT), etc., 
are, therefore, not very well suited ([8]-[10]). Furthermore, 
adaptation should not be implemented on the host machine, 
since frequent communication with the host introduces 
additional strain on the system bandwidth. Similarly, 
algorithms that require off-line training, such as Principal 
Component (PC) based algorithms ([7]), are also unsuitable 
for implementation in such systems. Employing one of the 
wavelet transform (WT) based methods in spike detection 
([11] - [13]) ensures a highly accurate unsupervised 
detection, but has proven to be non-optimal for on-chip 
implementation due to its computational complexity ([7]). 
Lower complexity, energy-based spike detectors have been 
considered in [8], [10], [14]-[16] mainly Nonlinear Energy 
Operator (NEO) and local energy measures, which provide 
good autonomy and accuracy, as well as a low complexity 
and hence are suitable for an on-chip implementation. 
Another low-complexity spike-detection method is absolute 
value thresholding, commonly used as a reference in spike-
detection method performance estimation, however, in many 
cases, without taking into account the cost of an unsupervised 
estimation of its optimal threshold ([7], [10]).  

Despite the large number of papers dealing with the issue 
of neural spike detection, some of which have been 
mentioned above, there exists only a small number of 
methods that exploit the specificities and advantages of 
multi-electrode data ([17], [18]). In [17] a lifting scheme for 
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wavelet computation-based hardware has been presented, 
which is suitable for on-chip implementation. However, as 
the number of channels reaches the order of several hundred, 
sufficient data compression rates cannot be achieved. 

In this paper we introduce a low complexity method that 
takes advantage of the nature of multi-electrode data in order 
to achieve good spike-detection performance and which is 
suitable for on-chip implementation. 

II. METHODS 

A. Algorithm 

Spike detection has proven to be challenging in recordings 

where the signal level captured by an electrode is low and 

cannot be clearly distinguished from the noise. Our method 

takes advantage of the fact that in the case of multi-electrode 

recordings, this weak activity of a single neuron is 

simultaneously visible on multiple electrodes. By summing 

up the signals recorded on the surrounding electrodes with 

the signal of each individual electrode ( [ ]), the weak 

neuronal signal is often sufficiently amplified to exceed the 

detection threshold. The number of the summed electrode 

signals depends on the spatial electrode arrangement. An 

example of the original signal  [ ] and the locally summed 

signal that resulted from its summation with the surrounding 

electrode signals  [ ], are shown in the left column in Fig. 

1. The signals belonging to different electrodes are plotted 

on top of each other. The benefit of performing local 

summation of electrode signals is depicted on the plot in the 

right column of the same figure, showing a comparison of 

signal-to-noise ratios (SNRs) of spikes before and after the 

local summation. SNR of a spike, s, is defined as ratio 

between the peak value of the spike, (|  
 |), and the standard 

deviation of the noise signal on the electrode, j, on which the 

spike has the peak value:      |  
 |  ̆ ⁄ . The increase of 

SNR in summed signal ensures a better spike-detection 

performance.  

Further increase of SNR is achieved by a method based on 

the one presented in [16], applied to the local sums. The 

original method has been adapted for low-complexity 

hardware implementation by discarding the squaring and 

scaling operations and by transforming it in the form 

presented in (1). The parameter N is the length of a running 

window and depends on the characteristics of the spike 

waveforms that are present in the recording (e.g., frequency 

content). The  [̅ ] factor represents the mean value of  [ ] 
within the window of N samples. The presented local energy 

measure (LocEn), unlike the commonly used energy-based 

method that simply averages the squared signal, reflects the 

signal frequency as well as its amplitude. 

     [ ]  ∑   [   ]    ̅ [ ]   
    (1) 

A threshold is then applied on this signal in a form of a scaled 
value of the mean of      [ ], as follows:  

  [ ]   
 

 
∑     [   ] 

     (2) 

The size of the window M is on the order of several thousand 
samples, depending on the type of the neural preparation. The 
value of the scaling parameter C also needs to be chosen 

according to the type of the preparation in order to obtain 
optimum detection performance. An illustration of     [ ] is 
presented in Fig. 1. 

Calculating the locally summed signal for each electrode 
ensures that, in the vast majority of cases, spiking of a neuron 
is detectable on several neighboring electrodes. This reduces 
the probability of false spike reports that can occur when 
certain electrodes are affected by noise (e.g. electrical) 
enough to cause a threshold crossing. To this end, the method 
includes the possibility of detecting only the events in which 
threshold crossing has occurred on two or more electrodes. 

B. Test Data Sets 

Testing and verification of the proposed spike-detection 
method has been conducted on a set of realistic simulated 
data. The multi-electrode data set has been introduced in [19] 
and consists of real noise signal, recorded on the device 
presented in [5]. Superimposed on the noise are spike trains, 
based on real mouse retinal ganglion cell spike templates. 
The test data consist of 20 different data sets, each containing 
30s recordings of 28 neuronal cells positioned on top of an 
array, with 722 cells/mm

2
 density. The array consists of 90 

hexagonally arranged electrodes with 19 m inter-electrode 
distance ([5]).  

 
Figure 1.  Left (top) Traces from single electrodes plotted on top of one 

another; different colors represent different electrodes. (middle) Locally 
summed signals. (bottom) Local energy measure (LocEn); Right: 

Comparison of spike SNRs before and after local signal summation. 

C. Reference Spike-Detection Algorithms 

The presented method has been compared to two spike-
detection algorithms, the low-complexity of which meets the 
requirements of an on-chip implementation and that are based 
on function thresholding:  

1) Absolute Value Thresholding (Abs) method consists of 

thresholding the absolute value of the signal  [ ]. The 

optimal threshold has been chosen according to [20]: 

  [ ]      [ ]            [ ]        {
| [ ]|

      
} , (3) 

where    is a positive constant that depends on the type of 

experiment and   [ ] is an estimate of the standard noise 

deviation. 
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2) Nonlinear Energy Operator (NEO), [15], according to 

the following equation: 

    [ ]   [ ]   [   ]   [   ] , (4) 

  [     ]. Thresholding is performed using an integer 

multiple of the mean value of     [ ] . 

D. Performance metrics 

For the comparison of the spike-detection algorithms, we 

use the following definitions: 

The SNR of neuron i:            |  
 |   ⁄ ,  where    

   is 

the template of the neuron i on the electrode j, on which it 

has the maximal peak, and    is the standard deviation of the 

noise on that electrode. 

Spike-detection error rate ( ):   
       

  
, where FP stands 

for the overall number of false reports of spikes, FN for 

overall false negative reports and TS for the true number of 

spikes present in the test data set. 

Probability of false alarm:            ⁄ , where TN 

stands for the number of true negative samples, i.e., samples 

that do not contain spikes and Ls for the number of samples 

within a spike. 

Probability of detection:           .  

III. EVALUATION RESULTS 

An example comparison of the thresholded functions 
corresponding to the three spike-detection algorithms 
considered in this paper is given in Fig. 2. The topmost plot 
depicts the absolute value of the multi-electrode test data and 
represents the function to be thresholded during the execution 
of the Abs algorithm. The signals on the individual electrodes 
are plotted on top of one another. The center plot corresponds 
to the NEO-processed signal according to (4). The bottom 
plot shows the LocEn signal according to (1). This example 
illustrates the benefit of applying the local energy measure 
LocEn to increase the signal to noise ratio of a signal, when 
compared to the other two methods. 

 
Figure 2.  Comparison of three spike-detection algorithms on multi-

electrode data: Abs, NEO and LocEn detection (from top to bottom).  

Dots mark the true positions of spikes within the depicted time interval. 
The higher SNR, as compared to the other two methods, indicates that 

the local energy measure-based detection is more suitable for 
thresholding. 

A. Spike-Detection Performance 

The parameters of the individual methods were varied in 

order to determine the trade-offs between the probability of 

detection (a measure of spike-detection reliability) and the 

probability of false alarms (a measure of bandwidth/power 

requirement overhead). The goal of the parameter space 

exploration was to ensure that only the points in the space 

for which     is below 30% and    above 70% are 

considered in further investigations [7]. 

After opting for the parameters that ensure a maximal 

probability of detection and at the same time a minimal 

probability of false alarm, we investigated the dependency of 

the number of false negatives (normalized with respect to the 

true number of spikes) on the neuron’s SNR (presented in 

Fig. 3). In the same figure we show the relation between the 

three algorithms in terms of number of false positives 

(normalized with respect to the true number of spikes). We 

see the advantage of the LocEn algorithm, which, for the 

similar rate of false negatives, yields a lower rate of false 

positives and thus imposes lower demands on system 

bandwidth and power consumption. Spike overlaps (defined 

as spikes for which negative peaks are less than 10 samples 

apart) were not considered in Fig. 3, since it is not clear to 

which of the overlapping neurons the detected overlap 

should be assigned when computing the false negative rate. 

 
Figure 3.  The false-negative rate dependence on the neuron’s SNR. When 

set to achieve similar false negative rates, the algorithms show difference in 

overall false positive rates: LocEn provides the greatest savings in system 
bandwidth and power consumption. 

The performance of each of the methods for the chosen 

trade-off between false reports and failure to detect spikes is 

expressed by the spike-detection error rate (e) in Table I. 

The results show that LocEn is more suitable to perform this 

trade-off, in comparison to the other two methods. 

TABLE I.  ERROR RATES OF DIFFERENT METHODS IN THE TRADE-
OFF BETWEEN FALSE POSITIVE AND FALSE NEGATIVE REPORTS OF 

SPIKES 

 LocEn NEO Abs 

Error Rate (e) 31.89% 41.62% 39.91% 

 

 

 

 

2537



 

 

 

B. Hardware-Implementation Performance 

From the hardware implementation point of view, three 

parameters are considered for each algorithm: computational 

logic and memory requirements, as well as the spike-

detection latency; i.e., the number of sampling cycles that 

pass between the occurrence of a spike and its correct 

detection. Table II. shows the results of the comparison 

without taking into account hardware-resource sharing 

strategies and registers that are needed to store intermediate 

results and threshold values. Subtraction and comparison 

operations are counted as an addition, division is set 

equivalent to multiplication, and the squaring operation is 

given separately, since, if necessary, it can be implemented 

using look-up tables in order to save computational 

resources. 

The mean of LocEn and NEO are calculated over 

windows of several hundred samples in length, such that the 

threshold values are constant within a running window and 

reflect the mean of the signal samples of the preceding 

window. This strategy ensures a low-complexity real-time 

implementation, as the history of the signal does not need to 

be stored, which would otherwise be necessary if a running 

window were considered instead of the one that precedes it. 

For estimating the median of the signal’s absolute value, in 

order to calculate the threshold of the Abs algorithm, one of 

the available hardware-friendly algorithms, suitable for real-

time implementation, has been considered [21]. 

TABLE II.  COMPARISON OF HARDWARE REQUIREMENTS FOR 

DIFFERENT ALGORITHMS: COMPUTATION RESOURCES, MEMORY AND 

LATENCY, PER CHANNEL (NO HARDWARE-RESOURCE SHARING STRATEGY 

IMPLEMENTED) 

Method 
Computation Resources Memory 

[samples] 

Latency 

[# sampl. Clk] Preprocessing Threshold  

Abs 2ADD 
1MUL 

5ADD 
0 0 

 

NEO() 

1SQ 

1MUL 

1ADD 

1MUL 

1ADD 
  

LocEn 
2SQ 

2MUL 

3ADD 

1MUL 

2ADD 
N-1 0 

IV. CONCLUSION 

We have presented a spike-detection method, targeting 

multi-electrode recordings, that is suitable for on-chip 

implementation due to its ability to adapt in an unsupervised 

manner to changes in the recordings and its relatively low 

complexity. We have shown that it outperforms two 

commonly used low-complexity methods – Absolute Value 

Thresholding and Nonlinear Energy Operator in terms of 

spike-detection performance, while featuring reduced 

demands on system bandwidth and power consumption. The 

spike overlaps are detected as single spikes, and the 

separation of the overlapping spikes can be done in the spike 

classification stage on the host. 
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