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Abstract— Obstructive sleep apnea (OSA) in children can
lead to daytime sleepiness, growth failure and developmental
delay. Polysomnography (PSG), the gold standard to diagnose
OSA is highly resource intensive and is confined to the sleep
laboratory. In this study we propose to identify children with
OSA using blood oxygen saturation (SpO2) obtained from
the Phone Oximeter. This portable, in-home device is able
to monitor patients over multiple nights, causes less sleep
disturbance and facilitates a more natural sleep pattern. The
proposed algorithm analyzes the SpO2 signal in the time and
frequency domain using a 90-s sliding window. Three spectral
parameters are calculated from the power spectral density
(PSD) to evaluate the modulation in the SpO2 due to the
oxyhemoblobin desaturations. The power P, slope S in the
discriminant band (DB), and ratio R between P and total
power are calculated for each window. Tendency and variability
indices, number of SpO2 desaturations and time spent under 2%
or 3% of baseline saturation level are computed for each time
window. The statistical distribution of the temporal evolution
of all parameters is analyzed to identify 68 children, 30 with
OSA and 38 without OSA (nonOSA). This characterization was
evaluated by a feature selection based on a linear discriminant.
The combination of temporal and spectral parameters provided
the best leave one out crossvalidation results with an accuracy
of 86.8%, a sensitivity of 80.0%, and a specificity of 92.1% using
only 5 parameters. The median of R, mean of P and S and mean
and standard deviation of the number of desaturations below
3% of baseline saturation level, were the most representative
parameters. Hence, a better knowledge of SpO2 dynamics could
help identifying children with OSA with the Phone Oximeter.

I. INTRODUCTION

Obstructive sleep apnea (OSA) is a sleep-disordered

breathing characterized by partial or complete upper air-

way collapse that disrupts normal respiratory gas exchange.

These obstructive events lead to oxygen desaturation, and

an increase in mechanical respiratory efforts to reopen the

upper airways. When the efforts are not enough and the

hypercapnia (high level of carbon dioxide in the blood)

level is dangerous, an arousal is generated to reactivate all

the peripheral systems and respiration is restored. These

desaturation episodes may occur hundreds of times during

the night, with serious health implications [1]. The high
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prevalence of OSA determined objectively in population-

based studies (2.2 to 3.8%) poses a serious threat to the

healthy growth of many children [2]. The lack of oxygen

during sleep can lead to daytime sleepiness, heart failure,

behavioural problems and developmental delay [3].

Polysomnography (PSG), the gold standard for OSA

diagnosis, consists of an overnight recording of multiple

physiological signals. It requires a comprehensive sleep

laboratory and the inconvenience of an overnight stay in

the facility. It is highly resource intensive and confined to

centralized tertiary facilities, with limited accessibility for

many children, especially those located remotely. The apnea-

hypoapnea index (AHI) calculated from PSG is used to

characterize the severity of sleep apnea. It measures the

average number of apnea and hypopnea events per hour of

sleep. The relative high cost and complexity of PSG limit

its capacity as a screening test. Nocturnal oxygen saturation

has been proposed as an alternative to PSG, for sleep apnea

detection in adults. It showed accuracy as a screening tool

but comes with important limitations as a single diagnostic

tool for OSA [4], [5]. While pulse oximetry is part of the

standard of care for PSG, further research on its potential

to provide a standalone sleep apnea screening and testing

device has been encouraged [6].

The Phone Oximeter, is a mobile device that integrates

a pulse oximeter with a cell phone. In addition to the

oxygen saturation (SpO2), it provides a photoplethysmogram

(PPG), signal of blood volume changes. Combined with a

pulse oximeter, the inherent capabilities of a standard mobile

phone have the potential to overcome the limitations of a

standalone pulse oximeter, and enable the intelligent analysis

and intuitive communication of information to a health care

worker [7]. Moreover, it has been demonstrated to be an

intuitive tool for the operating room [8].

Our goal is to provide, with the Phone Oximeter, a

screening device to identify children with significant sleep

apnea. We hypothesize that further knowledge on SpO2

dynamics could provide relevant information about the

identification of sleep apnea. The aim of the present work

is therefore, to characterize dynamic changes in the SpO2,

and use the Phone Oximeter as a screening tool to detect

children with sleep apnea (AHI > 5).
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II. METHODS

A. Dataset

Following ethics approval and informed consent, 72 chil-

dren referred to the British Columbia Children’s Hospital

for a PSG recording were recruited. The data acquisition was

carried out in a dedicated facility attached to the Medical Day

unit. PSG included the overnight measurement of ECG, EEG,

SpO2, chest movement, nasal airflow and video recording

using the Embla Sandman S4500. The pulse oximeter sensor

of the Phone Oximeter was applied to the finger adjacent to

the one used during standard PSG. SpO2 from the Phone

Oximeter was recorded at a sample frequency of 1 Hz. A

sleep technician scored the PSG, in 30-s epochs using stan-

dard criteria [9]. Each epoch was analyzed for the number

of apneas, hypopneas, EEG arousals and oxyhemoglobin

desaturation. Apnea was defined as the absence of airflow for

at least 10-s. Hypopnea was defined as a reduction of airflow

lasting at least 10-s associated with either a 4% decrease in

the arterial oxyhemoglobin saturation or and EEG arousal.

The number of apneas/hypopneas was calculated hourly to

compute the average AHI. Four children were excluded from

the study because the duration of their signals (PSG or SpO2)

was shorter than 3-h. Table I summarizes the demographic

and clinical data of the children that were included, as well

the AHI index derived from the PSG diagnosis. For this study

an AHI greater or equal to 5 events per hour was considered

as positive OSA.

TABLE I

DEMOGRAPHIC AND CLINICAL INFORMATION OF THE DATASET

(MEAN±SD), AND p-VALUE WHEN COMPARING OSA AND NONOSA

GROUPS USING THE U-MANN-WHITNEY TEST.

OSA nonOSA p− value

Children (n) 30 38 -
Age 9.7±4.8 8.5±4.3 n.s.
Male(Female)* 23(7) 14(21) 0.003
BMI 24.3±9.7 18.3±4.9 0.014
AHI 24.29±9.65 1.4±1.08 < 0.0001

*: The gender information of three subjects is unknown.

B. Phone Oximeter SpO2 characterization

The Phone Oximeter’s SpO2 was characterized in the time-

frequency domain. Artifacts were removed by eliminating

changes of SpO2 between consecutive sampling intervals

of more than 4% per second, or any oxygen saturation

below 50%. Figure. 1 illustrates a one hour-length SpO2

signal segment, for (a) a child with OSA and (b) a child

without OSA.

The SpO2 signal was characterized in the spectral domain

through the power spectral density (PSD), and in the time

domain by some statistics, variability measures and indices

related to desaturation episodes proposed in previous works

to predict the presence of the OSA [5], [4].

1) Spectral domain: Conventional spectral analysis as-

sumes stationarity in the signal and is therefore unable to

identify pattern changes. An approach to account for such

changes is to implement a time-varying spectral analysis.
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Fig. 1. One hour of the SpO2 signal of a child (a) with OSA (AHI = 55.5)
and (b) without OSA (AHI = 0.3)

Using a 90-s sliding time window with 50% overlap, the

SpO2 signal was divided into small segments that can be

assumed to be stationary and therefore permit computation of

power spectral density (PSD). To provide a better frequency

resolution a parametric power spectral estimation was per-

formed through autoregressive modeling.

Power spectral density (PSD): The signal x(n) is modeled

through an autoregressive model by

x(n) =−

p

∑
k=1

a[k]x(n− k)+ e(n) (1)

where e(n) denotes zero-mean white noise with variance σ2
e ,

a[k] the AR coefficients and p the model order. Once the

autoregressive coefficients and the variance σ2
e have been

estimated, the PSD of an autoregressive process is computed

by means of

P̂x AR( f ) =
σ2

e
∣

∣1+∑
p
k=1 a[k] · e− j·2π f kT

∣

∣

2
· (2)

being T the sampling period. The selection of model order is

a trade-off between the frequency resolution and the spurious

peaks. The optimum model order was evaluated according to

Rissanens minimum description length criterion p = 10.

Three spectral parameters were extracted from the discrim-

inant frequency band (DB), which consist of a frequency

interval (0.02 Hz) centered around the modulation frequency

peak, tracked in the band from 0.01 to 0.05 Hz. The power

of the DB, the ratio between the power of the DB and total

power, and the slope between the modulation frequency peak

and the right end of the DB, divided by the total power, were

studied.

2) Time domain: The mean, median, standard deviation and

interquartile range of the SpO2 and indices like number

of oxyhemoblobin desaturations from baseline below 3%

and 4%, cumulative time spent below an oxyhemoblobin

saturation of 92%, 90%, 88%, 86% and ∆ index (a variability
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Fig. 2. Time-varying power spectrum of a child with OSA (AHI = 55.5).

measure of oxyhemoblobin saturation) were calculated for

each time window.

C. Data analysis

The whole parameter set characterizes the behavior of the

SpO2 for each time window. However, to identify children

with OSA syndrome, the statistical distribution of each time-

varying parameter was evaluated. Table II summarizes the

different parameters and their statistics: mean (M), median

(Me), standard deviation (S), and interquartile range (I).

TABLE II

PARAMETER DESCRIPTION AND STATISTICS

P; MP, MeP, SP, IP Power of DB

R; MR, MeR, SR, IR Power ratio

S; MS, MeS, SS, IS Slope of DB

MSp02
; MMSp02

, MeMSp02
, SMSp02

, IMSp02
Mean SpO2

MeSp02
; MMeSp02

, MeMeSp02
, SMeSp02

, IMeSp02
Median SpO2

SSp02
; MSSp02

, MeSSp02
, SSSp02

, ISSp02
Stan. dev SpO2

ISp02
; MISp02

, MeISp02
, SISp02

, IISp02
Interq. range SpO2

∆; M∆, Me∆, S∆, I∆ ∆ measure

2%; M2%, Me2%, S2%, M2% # desat. ≤ 2%

3%; M3%, Me3%, S3%, M3% # desat. ≤ 3%

T92; MT92
, MeT92

, ST92
, IT92

Time below 92%)

T90; MT90
, MeT90

, ST90
, IT90

Time below 90%)

T88; MT88
, MeT88

, ST88x, IT88
Time below 88%)

T86; MT86
, MeT86

, ST86
, IT86

Time below 86%

In this study, we used linear discriminant analysis to identify

children with OSA. Using the statistics extracted from each

parameter distribution, a feature selection algorithm was

applied. The parameters that provided the best classification

accuracy, maintaining a good sensitivity-specificity balance

were selected, using leave one out crossvalidation [10].

Fig. 3. Time-varying power spectrum of a child without OSA (AHI = 0.3)

III. RESULTS

A. Illustration of the method

Figures 2 and 3 illustrate the performance of the time-

varying PSD applied to a child with and without OSA, re-

spectively. From these figures it is clear that the power in the

DB (0.01−0.05Hz) defined by the modulation of the SpO2

is much higher in children with OSA due to oxyhemoblobin

desaturation events, than in children without OSA.
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Fig. 4. Temporal evolution of (a) power of the DB, (b) interquartile rage
of the SpO2 and (c) ∆ variability measure, together with the apnea events
(in red), for a child with OSA.

Figure 4 shows the overnight dynamic of three of the

most statistically significant (p-value < 0.001) parameters

comparing OSA and nonOSA children. It can be observed
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Fig. 5. Accuracy, sensitivity and specificity of the feature selection based
on a linear discriminant analysis using (a) time features, (b) spectral features,
(c) combination of temporal and spectral features.

that the power in the DB and the variability of the SpO2

signal, reflected by the interquartile range of the SpO2 and

∆ index, increase significantly during sleep apnea events.

B. Classification

Figure 5 shows the performance of the feature selection

in terms of accuracy, sensitivity and specificity classifying

OSA and nonOSA children, whenever a new feature was

included to the linear discriminant. The classification results

using only temporal features (Figure 5.a), spectral features

(Figure 5.b), and a combination of both (Figure 5.c) were

studied. It can be observed that spectral parameters tend to

perform better than temporal parameters identifying OSA

patients and that the classification accuracy improves slightly

using the combination of temporal and spectral parameters.

Table III shows the mean, standard deviation and p-value

of the most discriminant features chosen by the feature

selection algorithm using temporal and spectral features (see

Figure 5.c). Using 5 features (3 spectral and 2 temporal)

and a linear discriminant analysis we achieve an accuracy

of 86.8%, a sensitivity of 80.0%, and a specificity of

92.1% classifying OSA and nonOSA subjects. These results

marginally increase to 88.2%, 80% and 94.7%, respectively

using 10 features (6 spectral and 4 temporal).

IV. DISCUSSION

In this work, time-varying characterization of the Phone

Oximeters SpO2 signal in the time and spectral domain

is proposed to detect children with OSA. The SpO2 is

characterized by spectral parameters extracted from the PSD

and statistics, variability indices, number and duration of

oxyhemoblobin desaturations. After a feature selection, an

TABLE III

FEATURES SELECTED TO CLASSIFY OSA VS NONOSA (MEAN±SD) AND

p-VALUE USING THE U-MANN-WHITNEY TEST

Feature OSA nonOSA p-value

f1 MeR 0.63±0.07 0.57±0.05 < 0.0001
f2 S3% 0.58±0.28 0.42±0.21 0.01
f3 MP 424±503 282±395 0.007
f4 M3% 0.14±0.18 0.06±0.08 0.02
f5 MS 1.06±0.29 0.85±0.17 < 0.0001
f6 MR 0.62±0.07 0.57±0.04 < 0.0001
f7 M∆ 0.38±0.18 0.28±0.10 0.001
f8 SS 1.03±0.29 0.88±0.28 0.001
f9 I∆ 0.31±0.18 0.20±0.07 < 0.0001
f10 IS 1.02±0.21 0.84±0.13 < 0.0001

accuracy of 86.8%, sensitivity of 80.0%, and specificity of

92.1% is achieved with a linear discriminant using a set of 5

features from the time and spectral domain. As a preliminary

study, these results allow consideration of the time-varying

characterization of the SpO2 signal as a suitable tool to

provide further knowledge of oxygen saturation dynamics

and to identify children with OSA. This characterization

could permit the use of Phone Oximeter as a sleep-screening

tool to identify children with significant sleep apnea.
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