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Abstract—This paper, considers the evolution of a method 

presented previously by authors to correct for cross 

contamination effect on the dynamic image sequences and 

shows how this development allows for a robust voxel by voxel 

implementation yielding parametric images for healthy and 

unhealthy subjects. Our approach is based on the 

decomposition of image pixel intensity into blood and tissue 

components using Bayesian statistics. The method uses an a 

priori knowledge of the probable distribution of blood and 

tissue in the images. Likelihood measures are computed by a 

General Gaussian Distribution (GGD) model. Bayes’ rule is 

then applied to compute weights that account for the 

concentrations of the radiotracer in blood and tissue and their 

relative contributions in each image pixel. We tested the 

method on a set of dynamic cardiac 18F-fluoro-deoxy-d-glucose 

PET of healthy rats and unhealthy rats. The results show the 

benefit of our correction on the generation of parametric 

images of myocardial metabolic rates for glucose (MMRG). 
 

Keywords: PET, Kinetic Modeling, Input Function, Bayes 

Rule. 

I. INTRODUCTION 

maging of myocardial viability by PET is a medical exam 

to assess glucose metabolism of the heart. The objective is 

to evaluate cells damaged or destroyed by heart disease 

through rate of glucose metabolism. The use of images 

allows both to confirm the cardiac lesions revealed by 

another investigation and to assess the extent of tissue 

damage following a heart disease. The estimation of the 

MMRG from PET images is obtained by compartmental 

modeling. This method uses image data but requires an input 

function (IF) to account for the radiotracer delivered to the 

tissue. 

Up to now, the invasive gold standard arterial plasma 

sampling procedure to obtain IF remains the reference. An 

alternative method has been developed to extract IF directly 

from image sequences [1-2]. 

In this paper, we improve the approach presented in [3] 
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based on the decomposition of the pixel intensity of blood 

and tissue components. The likelihood function in this work 

is estimated from the spatial domain modeled by a GGD.  

II. MATERIALS AND METHODS 

A. PET measurements 

All experiments were performed on Fischer male rats 

weighing 200−220 g (Charles River Canada). The 

experiments followed a protocol approved by the Canadian 

Council on Animal Care and the in-house ethics committee. 

The experimental protocol was designed in such a way that 

the animals had free access to food and water throughout the 

studies. The study was performed on a set of normal rats 

(n=12) and rats with myocardial infarcted (MI) induced by 

ligature of the left coronary artery (n=4) injected by the 
18

F- 

Fluoro-Deoxy -Glucose (
18

F-FDG). The PET scans were 

performed with the Sherbrooke small-animal PET scanner 

(LabPET4). The scanner is made of 32 avalanche 

photodiode detector rings and produces 63 image planes (32 

direct, 31 cross) over a 3.75 cm axial field of view (FOV). 

The pixel size after reconstruction is 0.5mm×0.5mm×1.175 

mm. The scanner h 

as a flexible system of acquiring list-mode data that 

allow elaborate dynamic PET image series to be extracted as 

desired. Almost 60 minutes of dynamic acquisitions in list-

mode were performed on the LabPET4 scanner. Radiotracer 

was injected via a catheter in the caudal vein. The injection 

of 50 ± 5 MBq of 
18

F-FDG in a volume of 400 µL was done 

over the course of 1 minute using an automatic infusion 

pump in the tail vein. During the acquisition, blood was 

withdrawn through a femoral artery catheter at 20, 40, 50, 

60, 70, 90, 120, 150, 180 sec and at 5, 10, 15, 20, 25, 35, 52 

min. The blood time-activity curves were generated from a 

linear interpolation of the blood sampling data to the PET 

dynamic series of 31 frames. Thirty minutes after the 

injection, the glucose level was obtained from the plasma 

analysis using a commercial reagent kit (Siemens Healthcare 

Diagnostic Inc., Deerfield, IL, USA) and an automated 

clinical chemistry analyzer (Dimension Xpand Plus, 

Siemens Healthcare  Diagnostic Inc., IL, USA). 

B. Methods 

In order to quantify the MMRG, a mathematical framework 

was developed by several investigators [4,5]. The three-
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compartment 
18

F-FDG model is utilized in this study for 

estimating the rate constants and the MMRG. The model 

which refers to the target tissue measured by the scanner is 

described by a set of differential equations where the 

solution is given by the following [5]: 
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and    is the parent tracer concentration in plasma. It refers 

to the IF in the model.    is the whole blood concentration. 

      and    are respectively the total tissue concentration, 

the extracellular concentration and phosphorylated FDG 

concentration. The constant    refers to the rate of delivery 

of the tracer to tissue in units of volume of blood per mass 

of tissue per minute (mL/g/min), and   ,   ,    are the 

transport rate constants in units of min
-1

. The symbol   in 

(1) indicates the convolution operation. The MMRG is 

defined by: 
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where     is the glycemia value in      ⁄ ,   
     

     
 the 

influx rate constant and    = 1 is the lumped constant 

accounting for the utilization of FDG versus glucose which 

is the natural substrate.  

In order to correct blood and tissue for the cross 

contamination, we propose in this paper a new likelihood 

function for tissue and blood activities and one for a priori 

knowledge of the blood activity in the Bayesian approach 

presented in [3]. Given two manually drawn region of 

interest (ROI) as depicted in Figure 1( first one around the 

blood pool and second one around the myocardium), 

 
Figure 1- Image of the rat heart measured with 

18F-FDG during 20 min at 40 

min after tracer injection 
 

we denote the region delimited by the external contour in 

image as  . The pixels outside this region were not 

considered for cross contamination correction. The activity 

within   is modeled as a random field    , where   
      refers to the time index of the image frame within 

the sequence. The value of    at a point     is written 

as    
 . We consider every frame measurement as a mixture 

of two distinct components for blood and tissue activities. 

Consequently,    is modeled as a mixture of two random 

processes,   
  which models the blood component and   

  

which models the tissue component.   is spatially split into 

two parts,    and   . Thus, we consider that the pure 

activity of blood into the manual ROIs is given by :  
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and the pure activity of blood into the manual ROIs is given 

by : 
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In (3) and (4),     
  [   ] and     

   [   ] are the actual 

fractions of blood and tissue activities at each pixel     at 

time        . In the following, we estimate these 

fractions from the measured    using a Bayesian framework 

as :  
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Similarly, the tissue fraction is defined as: 
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where     
  is a pixel belonging to the tissue ROI. The 

estimation of the different parameters (        ) is 

presented in [6] 

The a priori for the blood is computed from a sampled    

curve. The curve was carefully sampled with a 5 seconds 

step during the first 2 min of the scan. The weights over 

time in the Bayesian rule are calculated as follows: 

 (  
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Where     is the sampled   . Figure 2 depicts the blood 

prior  (  
 ) 

 
Figure 2- Prior probability of  (  

 ) after a bolus injection, the tracer 
diffuses into the tissue and consequently it exponentially decreases with 

time.  

The tissue prior  (  
 ), depicted in Figure 3, is computed 

from the FDG model as the response of tissue after a bolus 

injection. It follows from (2) 
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where   = 0.102 ml/ min/ g ,    = 0.13 min
-1

,    = 0.062 

min
-1

, and   = 0.0068 min
-1

. These parameter values are 

representative of those usually obtained from studies in 

normal subjects. 

 
Figure 3- Prior probability of  (  

 ). The PET measurement in a tissue is 
viewed as the cumulative uptake response of the radiotracer diffused by 

blood 

III. RESULTS 

Our approach allows to isolate the fractions of blood and 

tissue in each pixel of the PET image. Consequently, it 

allows to generate blood and tissue image sequences with 

low cross contamination. The ROI's mean calculated on each 

image sequence produce free cross contamination effect time 

activity curve (TAC). Figure 4 depicts TACs calculated by 

different technic on the same subject.  

 
Figure 4-time activity curve calculated from the same rat. Comparison 
between sampled, extracted IF (Cp) and IF from ROI shows that the ROI-

IF is higher than the sampled and the extracted is close to the sampled. 

To assess the macroparameter MMRG, One common 

method uses just one tissue TAC and equation(1). Figure 5 

illustrates kinetic modeling using (1).  

 

 
Figure 5-. A nonlinear least squares fitting of the f tissue TAC by the three 

compartment model. (A) tissue TAC is computed from original image as a 
mean of tissue ROI acitivies. (B) tissue TAC is computed from corrected 

image as a mean of tissue ROI acitivies 

Figure 5(A) shows an early peak in tissue and consequently, 

the fit of real data give by nonlinear least squares would not 

allow a reliable parameters. In contrast, in Figure 5(B) the 

second term in (1), which refers to the fractional contribution 
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of blood in tissues, is insignificant. This is a result of the 

correction made in the tissue activity over the time. 

However, the global MMRG assessment is not a reliable 

method to study the viability of different areas of the heart. 

The method is used as an indicator of the global function of 

the organ. In contrast, the production of MMRG value at 

each voxel allows a good prediction of the viability of the 

tissue. Figure 6 depicts a parametric images calculated with 

and without correction of the tissue activity. In Figure 6(A) 

the unit of glucose metabolism is poorly visualized due to 

the effect of the cross contamination of tissue TAC activities 

on the original image. In contrast, Figure 6 (B) illustrates the 

importance of correcting for tissue activity. Indeed, the 

parametric image has a good contrast and the estimated 

MMRG values appear as expected for a healthy heart.  

 
Figure-6: Parametric MMRG image. Images are resized directly in units of 
glucose metabolism (micromole/100g/min). (A) Parametric MMRG image 

computed with original images. (B) Parametric MMRG image computed 

with corrected images.  

In the case of MI induced by ligature of the left coronary 

artery which delivers glucose to the myocardium, we expect 

to obtain a lower unit of MMRG on the parametric image. 

Figure 7 illustrates glucose uptake pixel-by-pixel calculated 

on corrected and uncorrected tissue activity. Figure 7(A) 

illustrates the effect of cross contamination on the 

calculated MMRG value. The contrast is lower than the 

image calculated with corrected tissue TAC in Figure 7(B) 

which depicts clearly the area of the extent of damaged 

tissue.  

 

Figure 7- Parametric MMRG image for infarcted heart. (A) Parametric 

MMRG image computed with uncorrected images. (B) Parametric MMRG 

image computed with corrected images.  

IV. CONCLUSION 

We showed that the probabilistic estimations of the blood 

activity and the tissue activity in this work have an important 

benefit in the production of parametric images. Moreover, 

the MMRG parametric image has the advantage making easy 

the numerical evaluation of myocardial metabolism, and the 

compression of several image frames of dynamic PET 

studies. 
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