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Abstract— Due to the noisy measurement of the voxel-wise
time activity curve (TAC), parametric imaging for dynamic
positron emission tomography (PET) is a challenging task. To
address this problem, some spatial filters, such as Gaussian
filter, bilateral filter, wavelet-based filter, and so on, are often
performed to reduce the noise of each frame. However, these
filters usually just consider local properties of each frame
without exploring the kinetic information. In this paper, aiming
to improve the quantitative accuracy of parametric imaging, we
present a kinetics-induced filter to lower the noise of dynamic
PET images by incorporating the kinetic information. The
present kinetics-induced filter is designed via the similarity
between voxel-wise TACs under the framework of bilateral
filter. Experimental results with a simulation study demonstrate
that the present kinetics-induced filter can achieve noticeable
gains than other existing methods for parametric images in
terms of quantitative accuracy measures.

I. INTRODUCTION

Dynamic positron emission tomography (PET) is a pow-
erful tool in studying the physiological and biological pro-
cesses of radiopharmaceuticals within human body [1]. To in-
vestigate the useful information from dynamic PET imaging,
parametric images should be calculated through fitting time
activity curves (TAC) at each voxel with a linear or nonlinear
kinetic model [2]. However, due to finite spatial resolution
of PET scanners and low signal to noise ratio (SNR) in
short dynamic frames, some noticeable errors are inevitable
transferred to the voxel-wise kinetic parameter imaging from
the associative noisy TAC measurements.

To improve the quality of parametric images, many efforts
have been done to reduce the noise of the dynamic PET
images using image post-processing techniques, such as
Gaussian filter, bilateral filter, wavelet-based filter, and so
on [3-6]. Among these techniques, a simple and commonly
used strategy is Gaussian filter. Extensive experiments show
that Gaussian filter preforms well in the homogeneous region
with noticeable noise reduction, but fails at edges with spatial
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resolution loss due to its shift invariance. As an extended
version of Gaussian filter, bilateral filter was investigated
in PET studies with significant gains than Gaussian filter
in terms of the noise reduction and resolution preservation
[6]. However, it is worth to note that all these spatial filter
methods just reduce the noise in individual frames without
considering the kinetic information contained within all the
dynamic images.

In this paper, aiming to improve the quantitative accuracy
of parametric imaging, we develop a kinetics-induced filter
to lower the noise of dynamic PET images by incorporating
the kinetic information. The present kinetics-induced filter is
designed via the similarity between voxel-wise TACs under
the framework of bilateral filter because the tendency of the
TAC can provide the tissue-specific biochemical information.
Experimental data were acquired by numerical simulation
with a digital brain phantom to compare the performance of
the kinetics-induced filter in PET parametric imaging.

II. MATERIALS AND METHODS

A. Brief Review of Bilateral Filter

Bilateral filter was originally proposed by Tomasi and
Manduchi for 2D image processing [7]. Due to its good
performance in noise reduction and edge preservation, bi-
lateral filter has been successfully applied to biomedical
image denoising [6,8,9]. Mathematically, bilateral filter can
be written as follows:

BF(x)(i) =
∑

j∈Ni

w(i, j)x(j) (1)

where x(j) is the image intensity of voxel j, BF(x)(i)
represents the restored intensity of voxel i, Ni enumerates the
neighboring voxels centered at voxel i. The weight w(i, j)
consists of a product of two separate filters, one acting in the
spatial domain, one acting in the intensity domain. Generally,
the weight is designed with Gaussian shapes:

w(i, j) =
1

S(i)
exp

{
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}
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}
(2)

where S(i) =
∑

j∈Ni
exp{− (i−j)2

2σ2
s

} exp{− (x(i)−x(j))2

2σ2
x

} is
a normalizing factor and two parameters σs and σx control
spatial voxel neighborhood and image intensity similarity,
respectively.
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B. Description of Kinetics-Induced Filter

In dynamic PET studies, voxels in physiologically similar
regions should have similar tissue TAC kinetics. As a result,
the tendency of TAC can provide tissue-specific biochemical
information for dynamic PET image filtering. With this
observation, in this paper, we propose a kinetics-induced
filter to lower the noise of dynamic PET images by exploring
the kinetic information.

Specifically, the present kinetics-induced filter is designed
via the similarity between voxel-wise TACs under the frame-
work of bilateral filter. Similar to Eq. (2), the weight of the
kinetics-induced filter is constructed as:

w̃(i, j) =
1

S̃(i)
exp

{
−
(i− j)2

2σ2
s

}
exp

{
−
∥Z(i)− Z(j)∥2W

2σ2
z

}
(3)

where S̃(i) =
∑

j∈Ni
exp{− (i−j)2

2σ2
s

} exp{−∥Z(i)−Z(j)∥2
W

2σ2
z

}
is a normalizing factor. The TAC at voxel k is denoted as
Z(k) = {x(k, t), t = 1, 2, · · · , T}, where k = i, j and T
is the total sampling time frames. The similarity measure
between two TACs is calculated by a norm ∥·∥2W , which
is defined as ∥Y ∥2W =

∑T
t=1 W (t)Y 2(t), where W is the

vector of weighting factors. A simple choice of W is W =
{△tt} where △tt denotes the time duration of sampling
frame t. Two parameters σs and σz control the spatial voxel
neighborhood and the TAC similarity, respectively.

Based on the constructed weight w̃(i, j), a voxel-wise
weighted average operation can be performed for each frame,
which is similar to Eq. (1). Thus the kinetics-induced filter
can be described as follows:

KF(x)(i, t) =
∑

j∈Ni

w̃(i, j)x(j, t). (4)

It is worth to notice that the average weights for the voxel i
are same at each frame. Therefore, the kinetics-induced filter
can also be performed to the noisy TACs directly as follows:

KF(Z)(i) =
∑

j∈Ni

w̃(i, j)Z(j). (5)

From the weighted average of Eq. (5), we can see that the
proposed kinetics-induced filter takes advantage of both the
spatial and temporal consistencies of the dynamic PET data.

TABLE I
KINETIC PARAMETERS K1 , k2 , k3 , AND k4 WITH THE UNIT OF MIN−1

USED IN THE 18F-FDG PET SIMULATION.

Regions K1 k2 k3 k4

Gray matter 0.1104 0.1910 0.1024 0.0094

White matter 0.0622 0.1248 0.0700 0.0097

Small tumor 0.0640 0.0890 0.0738 0.0057

C. Simulated Dynamic PET Studies

The present kinetics-induced filter was validated in a com-
puter simulation. The tracer kinetic model used a dynamic
18F-FDG study with a two-tissue compartment model for
imaging glucose metabolism. In the simulation, a phantom

which consists of gray matter, white matter and a small tumor
inside the white matter [10] was used to simulate glucose
metabolism in brain, as shown in Fig. 1(a). The TAC of
each region was generated using a two tissue compartment
model and an analytical blood input function in Feng’s
model [11], as shown in Fig. 1(b). The calculation of the
kinetic model and the fitting procedure were performed using
functions provided by the COMKAT package [12]. The
kinetic parameters used in the simulation were taken from
literature [13] and are listed in Table I. The fractional volume
of blood in the tissue was set to zero for all regions. The
scanning schedule of dynamic PET data consists of 30 time
frames: 4×20 s, 4×40 s, 4×60 s, 4×180 s and 14×300 s,
borrowed from the study [13]. In the simulation, the TACs
were integrated for each frame and forward projected to
generate dynamic sinograms and then Poisson noise was
generated, which resulted in an expected total number of
events over the 90 min equal to 50 million. The filtered back-
projection (FBP) method with a ramp filter was used for the
dynamic PET reconstruction.

(a) (b)

Fig. 1. The 18F-FDG PET simulation settings. (a) A brain phantom
composed of gray matter, white matter and a small tumor; (b) The blood
input function and regional time activity curves.

Fig. 2. The ground truth and the activity images reconstructed by different
methods at frames #6, #16, and #26 (top to bottom). (a) are the ground truth;
(b) are from the direct FBP reconstruction; (c) are from the FBP images
processed by a Gaussian filter with the standard deviation σg = 0.9; (d)
are from the FBP images processed by the bilateral filter with σs = 4 and
β = 0.5; and (e) are from the FBP image processed by the present kinetics-
induced filter with σs = 4 and σz = 20. All images are with same display
window.
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Fig. 3. The ground truth and the Ki images estimated by different methods:
(a) is the ground truth; (b) is from the direct FBP reconstruction; (c) is from
the FBP images processed by a Gaussian filter with the standard deviation
σg = 0.9; (d) is from the FBP images processed by the bilateral filter with
σs = 4 and β = 0.5; and (e) is from the FBP image processed by the
present kinetics-induced filter with σs = 4 and σz = 20. All images are
with same display window.

(a) (b)

(c) (d)

Fig. 4. The NSD versus Bias tradeoff curves of the influx rate Ki images
estimated from the FBP images processed by the Gaussian filter, bilateral
filter and kinetics-induced filter in different brain regions. Different points
on the curves were obtained by varying the parameters σg , β and σz ,
respectively.

III. RESULTS

To evaluate the performance of the present kinetics-
induced filter, the conventional Gaussian filter and bilateral
filter were selected for comparison. Because the parameter
σx for bilateral filter should vary with different frames,
alternatively, we propose the following frame-dependent pa-
rameter written as σx,m = βσm, where β is a scaling factor,
and σm is the estimated variance for frame m, which is the
same as that used in our previous work [14]. For all these
cases, a Ni = 7×7 window centered at each voxel was used
for the neighbor averaging.

A. Comparison of Dynamic PET Activity Images

Figure 2 shows the ground truth and the activity images
reconstructed by different methods at the frames #6, #16,
and #26. The rows from top to bottom show the results at
frames #6, #16, and #26, respectively, i.e., the first column
images represent the ground truth; the second column are
the results from the direct FBP reconstructions; and the
third column images are the results from the FBP image

processed by a Gaussian filter with the standard deviation
σg = 0.9; the fourth column images are the results from
the FBP image processed by the bilateral filter with σs = 4
and β = 0.5; and the fifth column images are the results
from the FBP image processed by the present kinetics-
induced filter with σs = 4 and σz = 20. The results
demonstrate that the present kinetics-induced filter method
can yield significant noise reduction without suffering edges
and concealing subtle information as comparison to other
methods.

B. Comparison of PET Parametric Images

In the 18F-FDG PET studies, a major parameter of interest
is the influx rate Ki = K1k3/(k2 + k3), which is related to
the glucose metabolic rate by a scaling factor. Figure 3 shows
the ground truth and the Ki images estimated from different
methods: (a) is the ground truth; (b) is from the direct FBP
reconstruction; (c) is from the FBP image processed by the
Gaussian filter with the standard deviation σg = 0.9; (d) is
from the FBP image processed by the bilateral filter with
σs = 4 and β = 0.5; and (e) is from the FBP image
processed by the present kinetics-induced filter with σs = 4
and σz = 20. It can be seen that the present kinetics-induced
filter can achieve a better performance than other methods in
terms of both the noise reduction and detailed Ki parametric
information preservation.

In order to quantitatively evaluate the performance of the
present kinetics-induced filter, we use quantitative evaluation
criteria involving regional Normalized Standard Deviation
(NSD) versus Bias tradeoff curves. Borrowing the definitions
in [14], the NSD and Bias are defined as:

NSDroi =

√
1

|Mroi|−1

∑
j∈Mroi

(
Ki(j)− K̄roi

)2
K̄roi

× 100% (6)

Biasroi =

∣∣K̄roi −Ktrue
roi

∣∣
Ktrue

roi

× 100% (7)

where Ki(j) denotes the estimated Ki parametric value at
a voxel j(j = 1, 2, · · · , |Mroi|) of the specified ROI, K̄roi =∑

j∈Mroi
Ki(j)/|Mroi| denotes the mean value of estimated

Ki parametric value in the specified ROI, Mroi enumerates
all the voxels in the specified ROI, and |Mroi| represents the
number of voxel in the specified ROI. For the regional bias
(Biasroi), Ktrue

roi is the known uniform parametric value in
the given ROI.

Figure 4 shows NSD versus Bias tradeoff curves of
the influx rate Ki estimated from Gaussian filter method,
bilateral filter method and the present kinetics-induced filter
method for different regions in the brain phantom. Different
points on the curves were obtained by varying the parameters
σg , β and σz , respectively. It can be seen that parametric
images generated from the restored dynamic activity images
with our proposed filter performs better in terms of NSD
versus Bias tradeoff analysis than those generated by the
other two methods.
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IV. DISCUSSION AND CONCLUSION

To improve the quantitative accuracy of parametric imag-
ing, it is necessary to reduce the noise of the dynamic
PET images. Recently, for this purpose, bilateral filter has
been investigated in PET studies with significant gains than
Gaussian filter in terms of the noise reduction and resolution
preservation [6]. However, as one type of spatial filters,
bilateral filter just reduce the noise in individual frames
without considering the kinetic information contained within
all the dynamic images. Therefore, in this paper, aiming to
improve the quantitative accuracy of parametric imaging, we
developed a kinetics-induced filter to lower the noise of dy-
namic PET images by exploring the kinetic information. The
present kinetics-induced filter is designed via the similarity
between voxel-wise TACs under the framework of bilateral
filter. The smoothing is controlled by the both the geometric
closeness and the kinetics similarity between the center voxel
of the neighborhood and a nearby voxel in the neighbor-
hood. We have performed the simulation studies to validate
and evaluate the present kinetics-induced filter. The results
indicate that the present kinetics-induced filter can achieve
better bias-variance properties and quantitative accuracy for
parametric images than the conventional Gaussian filter and
bilateral filter.

In addition to the image post-processing techniques, many
statistical iterative reconstruction methods have also been
explored to reduce the noise of the dynamic PET images [15-
18]. Usually, prior information is used under the maximum a
posteriori (MAP) reconstruction framework, i.e., anatomical
similarity information from high-resolution MR or CT im-
ages [15], temporal information from kinetic models [16] and
local image structure information [17,18]. Considering its
remarkable performance in the noise reduction, the present
kinetics-induced filter could be modified as a spatio-temporal
prior of MAP reconstruction for dynamic PET.

Similar to bilateral filter, a difficult task for performing
the present kinetics-induced filter is the parameter selections
including the size of the neighbor window, and the smoothing
parameters which control the geometric closeness and the
kinetics similarity, respectively. In this study, all the param-
eters were determined by trial-and-error fashion and visual
inspection. In practice, all parameters should be optimized
adaptively based on the special application cases [19,20].

In the future, applying the present kinetics-induced filter
to clinical dynamic PET studies to validate its effectiveness,
and exploring some kind of methodology for the parameters
selection would be useful and interesting topics.
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