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Abstract—Restoration allows recovery of an image that has 

been blurred by using a priori knowledge of the blurring matrix 

and statistics of the noise. Therefore, it is important to obtain an 

accurate blurring matrix before restoring an image. The 

purpose of this study was to correct the blurring matrix using an 

artificial neural network (ANN). A Mini Deluxe Phantom™ was 

used to acquire images from microPET® R4 and a 

high-resolution optical scanner for ANN training. The images 

acquired using the two devices served as the inputs and outputs 

of a single-layer adaptive linear neuron network (ADALINE) for 

correcting the blurring matrix, which was further used for PET 

image restoration using Lucy-Richardson algorithm. The 

normalized root mean square error coefficient of variation and 

contrast recovery of the resorted images using the ANN 

corrected blurring matrix (BMANN) performed better than those 

without using the ANN. The spatial resolution (FWHM) of the 

restored image is better and more uniformly distributed than the 

original one. The CR is also better. The results suggested that 

blurring matrix can be improved by the ANN. 

I. INTRODUCTION 

Positron emission tomography (PET) images were blurred 
due to the positron range, non-colinearity, 
depth-of-interaction, and other factors. Those physical effects 
result in partial volume effect (PVE) and degrade the quality 
of PET images. Low image quality may lead to misdiagnosis. 
Furthermore, PVE needs to be corrected when calculating the 
standardized uptake value (SUV), delineating the tumor 
volume, or performing quantitative small animal studies . 
PVE is an important issue in case of low spatial resolutions 
compared to that of high resolutions. Therefore, image 
resolution improvement is important to reduce PVE. 

The blurred PET image can also be described by a 
shift-variant point spread function (PSF) [3, 4]. PSF means 
that after data acquisitions, a point spreads into a blurring 
function. The PSF of PET is known as spatially shift-variant [3, 

4]. The response of the PET system to a point source is 
different when the point source is placed in different places. 
Image restoration attempts to estimate an image that has been 
blurred by using a priori knowledge of the blurring matrix 
(BM) and statistics of the noise. Therefore many image 
restoration algorithms such as the Lucy-Richardson algorithm 
(L-R) [5, 6] and iterative thresholding algorithm [7, 8], 
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estimate blurring images as the linear combination of the BM 
and estimated sharp image and can be written as: 

                                                                                     

,ˆˆ xHy                                        (1) 

where H is the blurring matrix (BM). 

Thus many researchers tried to acquire the BM before 
obtaining the estimate of the true object [9-12]. A 
well-modeled BM can describe the relationship between the 
object and PET image and can be used to restore the PET 
image with better quality. Therefore the purpose of this study 
was to use ANN to correct the errors of a BM, which is 
approximated by a piecewise-linear interpolation for image 
restoration and further improve the quality of resorted images. 
The Lucy-Richardson (L-R) algorithm [5, 6] is also used to 
restore PET images with BMANN. We also compared the 
image quality of the restored image using BMANN with the BM 
which is approximated by piecewise-linear interpolation 
(BMLinear). 

II. MATERIALS AND METHODS 

A. Lucy-Richardson algorithm 

The L-R algorithm is a statistic iterative restoration 
method for recovering an image that has been blurred by a 
known BM [5, 6]. The L-R algorithm is the 
maximum-likelihood solution for Poisson statistical data and 
is defined in the following equation: 
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where x̂  is the input of the system, the estimated sharp image, 
y is a blurred image that is blurred by a shift-variant BM, H. In 
this equation, each vector operates point-by-point with each 
other and n indicates the results of the n

th
 iteration. We chose 

L-R to restore images with BMANN and BMLinear.  

B. ANN for correcting system matrix 

In order to correct the errors of an approximated BM, a 
single-layer adaptive linear neuron network (ADALINE) [13, 

14] with a bias vector and a positive constraint was used. As 
the single-layer architecture and linear output activation 
function, F(x) = x, were selected, the output of neuron can be 
written similar to (1) as follows: 
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where y
k
 is the neuron output, x is the neuron input, W

k
 is the 

weight matrix and b
k
 is the bias. In this study, PET images are 

treated as desired outputs, and neuron inputs, the sharp 
images, were generated by a high-resolution optical scanner. 
The single neural network, ADALINE, is simple with fast 
training speed. Moreover, the equation of ADALINE is 
identical to the relationship between the PET image and the 
sharp image as shown in Eq.(1). This means that the weight 
matrix W is a BM. 

The ADALINE uses the simple gradient descent algorithm 
to minimize the square error for ANN training with 10000 
iterations. Therefore, the generalized delta rule learning 
algorithm (GDR) was used to minimize the error between the 
network and desired output by supervised learning[13, 14], 
which can be described as follows: 
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where ΔW is the matrix for updating W, Δb is the vector for 
updating b, L is the learning rate ,and x is the neuron input. In 
this equation, δ

k
 is defined as follows: 

,
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ydδ                                    (6) 

where d is the desired output and y is the neuron output. For 
increasing rates of convergence, we also used the momentum 
learning algorithm [15]. The matrix for updating W is 
described as follows: 
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where r is the momentum term. The learning rate of GDR is a 
scalar.  

    
(A)                                  (B) 

Figure 1. (A) Mini Deluxe cold-rod phantom (B) Digital phantom for ANN 

inputs. The binary sharp images were segmented from the image scanned by 

a high resolution optical scanner. 

C. Network training using a physical phantom 

The cold-spot Mini Deluxe Phantom™ was used to 
acquire PET images and optical scanner images for ANN 
training. Here is the specification of this phantom: rod 
diameters: 1.2, 1.6, 2.4, 3.2, 4.0 and 4.8 mm; height of rods: 
3.4 cm; insert diameter: 7.5 cm; cylinder outer diameter: 8.3 
cm; cylinder inner diameter: 7.6 cm; cylinder inside height: 
3.8 cm (Fig. 1). There are 33 input and desired output pairs 
with different orientations (Fig. 2). The sharp input images 
were acquired using the Epson perfection 1240U optical 
scanner with pixel size of 0.01 mm. Then, the scanned image 
was segmented manually to form a binary sharp image (Fig. 1). 

After the radioisotope, 
18

F solution, was filled into the 
physical phantom, the desired outputs, PET images, were 
obtained from the cold spot Mini Deluxe Phantom with the 
corresponding orientations with respect to the microPET® R4. 
All PET images were acquired at rest for 3600s. After 
emission scanning, a 30 min transmission scan was taken with 
the 

68
Ge or 

57
Co transmission source. After segmented the 

transmission image into air, water and Lucite, the segmented 
transmission image was used for attenuation and single-scatter 
simulation scatter corrections [16]. After Fourier rebinning, 
the PET images were reconstructed using the filtered 
backprojection method. The pixel size of the reconstructed 
images is 0.423 × 0.423 × 1.121 mm. Correction for random 
events, radioactive decay, attenuation, scatter, and dead time 
was performed during reconstruction. Then we performed the 
rigid body transformation and re-sampled pixel size of the 
scanned image to align manually the input–output training 
pairs using the commercial software PMOD (PMOD 
Technologies, Zurich, Switzerland). Before ANN training, the 
total counts of input images were normalized to be the same as 
the corresponding desired output, the PET image.  

We used a multi-line hot-in-water phantom to obtain an initial 
guess of the BM for ANN (Fig. 3). First, we fitted each PSF in 
the PET image of the multi-line hot-in-water phantom using 
the asymmetrical Gaussian model. We then interpolated the 
variances in the adjacent regions using linear interpolation [11, 

12]. Then the BMLinear was calculated using the interpolated 
variances. 

 

  
(A)                                                 (B) 

Figure 2. Thirty three digital training sets with different orientations 

 

  
Fig. 3. (A) The PET image of the multi-line hot-in-water phantom 

D. Evaluation method 

The normalized root mean square error (NRMSE) is 
defined in Eq.(8). 
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where x is the sharp image obtained by an optical scanner, 
yEstimated is the restored image. The NRMSE was used to 
evaluate the difference between the data and their references.  

The coefficient of variation (CV) can be used to evaluate 
the uniformity of the image. CV can be defined in the 
following equation: 
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where r1 belongs to a uniform area of the image. We selected 
regions of interest (ROIs) in the uniform area of the images of 
the Mini Deluxe Phantom™ (one was inserted with cold spots 
and the other was inserted with hot spots) to evaluate our 
method (Fig. 4 B). 

Contrast recovery (CR) represents the contrast between 
the signal and background and can be defined as follows: 
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where r1 belongs to the target of the image (Fig. 4 C) and r2 
belongs to a background area (Fig. 4 B).  

The full-width-at-half-maximum (FWHM) is a figure of 
merit to evaluate the spatial resolution. Narrow FWHM 
indicates better resolution, while wider FWHM indicates 
worse resolution. We fitted each PSF in the images of the 
multi-line hot-in-water phantom using an asymmetrical 
Gaussian model. The FWHM is defined as follows: 

                                                       

,2ln(2)2FWHM
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where σaverage is the mean value of σ in different directions. 

 

          
(A)                            (B)                            (C) 

Figure 4. (A) PET image of the Mini-Deluxe phantom, (B) uniform and 

background area of the image, and (C) target area of the image. 

 

TABLE I.  NRMSES, CVS, AND CRS 

 NRMSE CV CR 

Original  0.34 0.08 0.66 

BMLinear 0.32 0.13 0.84 

BMANN 0.31 0.11 0.88 

 

 

Figure 5. The profiles of a PSF in BMReference (original measured PSF), 

BMLinear (initial) and BMANN (result). 

 

 
Figure 6. NRMSE of different iteration numbers. 

 

   
(A)                           (B)                         (C) 

Figure 7. (A) Original image (B) L-R algorithm with BMLinear (C) L-R 

algorithm with BMANN 

 

   
(A)                                            (B) 

Figure 8. (A) Original rat brain image (B) After restoration using L-R 

algorithm with BMANN 

TABLE II.  FWHMS (MM) MEASURED FROM THE HOT-IN-WATER 

PHANTOM 

 -3 

cm 

-2 

cm 

-1 

cm  

0 cm 1 cm  2 cm  3 cm 

Original  3.05  2.58  2.27  2.12  2.32  2.48  2.91  

BMLinear  2.46  2.19  1.74  1.70  1.83  2.11  2.40  

BMANN  2.28  1.76  1.54  1.51  1.62  1.79  2.30  
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III. RESULTS 

To evaluate the ability of ANN for correcting BM, we 
used a measured PSF to compare with corrected PSF. The 
location of the measured PSF was different from the locations 
of all the PSFs measured by the multi-line hot-in-water 
phantom. The corresponding profiles of the PSF are showed 
in Fig. 5. Figure 6 shows the NRMSE of different iteration 
numbers. Table I shows the RMSEs, CVs, and CRs of 10 
iterations. Table II shows FWHMs measured from the 
hot-in-water phantom. A phantom case with 10 iterations was 
showed in Fig. 7. A rat brain case with 10 iterations was 
showed in Fig. 8. 

IV. DISCUSSION 

The most technical limitation of PET is low spatial 
resolution. Several groups investigate methods to restore PET 
image. Image restoration is to estimate original object given 
knowledge of blurred image, BM, and the statistics of noise. 
In this study, we used ANN to correct BM for better results of 
image restoration. In this study, we do not use the optimal 
images as output and the PET images as input of the ANN 
because the initial guess of the inverse of BM is hard to 
estimate. If the initial guess is far away from exact solution, 
then more training sets are needed to estimate the exact 
solution.  Figure 4 show profiles of a measured PSF, the initial 
PSF, and the ANN corrected PSF. The results show that after 
ANN training, the profile of PSF would move toward the 
reference from the initial guess. The NRMSE, CV, CR of 
resorted images using ANN corrected blurring matrix is better 
than those without ANN (Table I). The resolution (FWHM) of 
the restored image is better and more uniformly distributed 
than the original one (Table II). The ANN approach can learn 
PSFs that were not included or were not corrected in the BM 
from real data. The computing time when applying ANN to 
correct BM of an image with a size of 256 × 256 × 63 is about 
one day. However the corrected BM is reusable if the imaging 
system is not changed. Furthermore the advantage of the ANN 
approach is that the ANN method can directly learn the PSF 
from real data, which might not be described correctly using 
interpolated BMLinear from measured PSFs from a 
multi-line-hot-in water phantom. However, errors occurred by 
the manual registration for input and output training sets. 
Although the commercial software PMOD was used, the 
contours of PET images were spread into an area because of 
the PVE. That may greatly degrade the efficiency of ANN 
corrected BM. Therefore, this ANN approach is suitable to be 
applied in a PET/CT scanner or PET/MRI scanner which does 
not need manual registration. The CT and MRI can also 
provide high-resolution images for ANN input. Thus, the 
image quality of the PET can be further improved by using the 
multimodality scanners. 

V. CONCLUSION 

PET images are blurred due to the shift variant PSF. 

According the result, the resolution of the restored image 

using L-R algorithm and BMANN is more uniform and sharp 

than the original image. The results of this study suggest that 

the BM can be updated toward ideal BM using ANN for 

image restoration. Therefore, the ANN approach can be used 

to improve image restoration of PET. 
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