
  

 

Abstract— A method is presented aiming at detecting and 

classifying bone lesions in 3D CT data of human spine, via 

Bayesian approach utilizing Markov random fields.  A 

developed algorithm for necessary segmentation of individual 

possibly heavily distorted vertebrae based on 3D intensity 

modeling of vertebra types is presented as well.    

I. INTRODUCTION 

Metastatic bone tumor in the spine is currently a 
widespread problem; the spine is the third most common site 
for cancer cells to form metastases, following the lung and 
liver. Spine tumors are usually detected by CT or MRI 
examination; the early detection is substantial to set up a 
respective treatment. The knowledge of position and volume 
of tumors and even risk areas is important in the diagnosis of 
the patient and also as an input to scoring systems for 
prospective surgical planning. Then, evaluation of tumor 
temporal changes is important, requiring time series of scans, 
ideally with the same scanning parameters. To support 
decisions on optimal treatment strategy, various prognostic 
score systems were introduced [1]–[5], defining several 
parameters influencing also the patient’s prognosis. Thus, 
segmentation of individual vertebrae in the image data and 
detection of their pathologic changes is needed for 
evaluation of patient’s health status, and for decisions on 
possible treatment. However, manual segmentation and 
analysis require extensive and time-consuming involvement 
of a clinical expert; therefore automated processing is highly 
desirable. 

This problem consists basically of two components: 
segmenting the spine and individual vertebrae in the image 
data, and subsequently detecting and evaluating the lesions 
in the vertebrae. Several approaches to identification and 
segmentation of individual vertebrae in CT data have been 
published, based either on manually placed landmarks [6] 
[7], on affine and flexible registration of their atlases [8], [9], 
on application of level sets [8], [10], or on constrained 
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adaptation of triangulated vertebra surface models [11]. 
Among these, the automated framework proposed by Klinder 
et al. [11] may be considered the current state of the art; 
however still not fully compatible with the peculiarities of 
shape deformations of vertebrae due to illness. The 
subsequent detection and classification of metastases in 
bones still belongs among generally unsolved problems, 
although several published papers deal with these problems, 
e.g. [12], [8], [14]. The problem is in low specificity of 
textural features in the bone lesion areas of different types.  

In this paper we are describing the results of a running 
project aiming first at a more reliable spine segmentation 
even in difficult cases of heavily distorted vertebrae, and 
second at the subsequent lesion detection, classification and 
measurement in the vertebrae that would reasonably 
correspond to the (rather uncertain) visual evaluation by 
medical experts. The presented approach of spine 
segmentation is based on twenty two differing spatial models 
of human vertebrae (six cervical, twelve thoracic and four 
lumbar) capable of being flexibly deformed by locally 
defined refinement respecting the actual distortion and 
position of a concrete vertebra. Moreover, the thoracic 
models were complemented with models of their adjacent 
ribs, enabling more accurate local refinement of the vertebra 
segmentation.  The method for the following detection, 
segmentation and classification of osteolytic (hypo-dense) 
and osteoblastic (hyper-dense) metastases within individual 
vertebrae is proposed, which utilizes the intensity 
distribution dissimilarities in different kinds of metastases to 
classify the lesions. The method uses a Markov Random 
Fields model in the Bayesian classification framework. The 
results of both processing phases were visually and 
numerically compared with the medical expert evaluations 
and the results statistically evaluated.  

II. EXPERIMENTAL DATA  

Total of 17 image CT spinal scans were acquired using 
Philips Brilliance iCT scanner with 256-channel multi-
detector row at the Osteo-Oncology Center, Istituto 
Scientifico Romagnolo per lo Studio e la Cura dei Tumori 
(I.R.S.T.) S.r.l., Meldola, Italy. The setup as in Table I was 
used for the image acquisitions. Contrast agent was present 
in seven image scans, while the remaining scans were 
provided without application of contrast agent. The 
inconsistency between contrasted and non-contrasted images 
was not an important obstacle in segmenting and analyzing 
individual scans; however a comparison of scans from these 
two different groups in time series of scans (separated by 
several weeks or months) was precluded due to differing 
lesion image parameters.  

3D CT spine data segmentation and analysis of vertebrae bone 

lesions * 

R. Peter, M. Malinsky, P. Ourednicek and J. Jan, Member, IEEE 

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 2376



  

TABLE I.  CT DATA ACQUISITION PARAMETERS 

Parameter Value 

Resolution 
768 x 768 pixels 

~2500 slices 

Slice thickness [mm] 0.67 

Anode voltage [kV] 140 

Spacing between slices [mm] 0.335 

X-ray tube current [mA] 232 

Pixel spacing [mm] 0.65 

 
Depending on the number of investigated vertebrae, 

individual 3D CT image scans consisted of some  ~ 890 to 
~2500 standard 2D DICOM® files containing the slice 
image data. Three men (65-73 years) and seven women (60-
77 years) were identified in the experimental image dataset. 

III. METHODOLOGY 

A.   Segmentation of spine 

The segmentation of spine utilizes a database of 3D 
intensity models of the individual types of vertebrae that has 
been prepared by averaging healthy vertebra image data. 
Using these models, accordingly modified for each 
individual vertebra, the concrete patient’s spine is segmented 
into separated vertebrae, subsequently then submitted to the 
analysis of lesions.  

Models of vertebrae  

The a-priori formed 22 models of individual types of 
vertebrae (six cervical, twelve thoracic and four lumbar) 
derived ahead, are the key concept in the presented 
segmentation approach. On the difference to [11] where the 
shape models are formulated as triangulated meshes, our 
models are 3D intensity data, derived by averaging of a 
number of normalized and registered healthy cases of the 
concrete vertebra type.  Possible problems, as e.g. that ribs 
and the transverse processes of the thoracic vertebrae may be 
mutually connected in the image data, are treated 
correspondingly by details of the algorithms. 

The vertebra database consists of models in the form of 
3D intensity data as in the first row of Figure 2. ; each model  

 

Figure 1.  Averaged images of registered selected cervical, thoracic and 

lumbar vertebrae; from minimum intersection of corresponding vertebrae 

(bright blue) to maximum intersection (dark red)  

 

Figure 2.  3D visualization of examples of cervical (i=7), thoracic (i=15) 

and lumbar (i=22) vertebrae models. First row: intensity models, second 

row: corresponding masks of parts of vertebrae. Intentionally, different 

views are presented to provide a better insight.   

is complemented by the corresponding binary 3D masks  
(lower row of the figure) as required by the segmentation 
algorithm. Each 3D model can be deformed in a large extent 
by different types of liner or non-linear spatial transforms 
(possibly based on local 3D disparities) thus capable of 
matching even substantially distorted shape and possible 
misplacement of a vertebra, afflicted by the illness.  

 Segmentation of individual possibly distorted vertebrae 

The generic overview of the spine segmentation 
procedure can be seen on TABLE II. , where the individual 
successive steps are indicated.   First, the vertebral column is 

TABLE II.  WORK-FLOW OF SPINE SEGMENTATION 
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Figure 3.  Automatically detected sagittal plane with manually identified 

centers of individual vertebrae 

to be identified via finding its curved axis and indicating 
simply the individual vertebrae  (Figure 3. - this only manual 
step so far will be automated in future). For each vertebra, 
the corresponding model according to the spine sequence is 
then registered initially by rigid and then by sophisticated 
flexible geometric transforms, in frame of the refinement 
phase.   

This way, the algorithm is capable of dealing with 
vertebrae affected by various pathologies, where e.g. the 
trabecular centers of such vertebrae may be visually 
unrecognizable from their surrounding soft tissues, and/or 
cortical shells may demonstrate an abnormal growth, 
deformation and/or necrosis. Moreover, the shape of the 
vertebra may differ significantly from the standard, due to 
metastasizing leading to fractures, compressions, etc. The 
presented segmentation accounts for various deformation 
scenarios of the pathologic vertebrae via deforming the 
respective models accordingly based on local disparity 
analysis. Another uneasy aspect that had to be considered 
under these circumstances is the necessity of masking the 
redundant structures. An example of partial results of the 
segmentation is on Figure 4.  

 

Figure 4.  Example of  segmentation of three thoracic vertebrae.           

First row:  imprecise initial segmentation of posterior segments,  second 

row: segmentation result with additional registration of the model posterior  

B. Detection, segmentation and analysis of lesions 

Lack of distinct texture inside lesions in the CT spine 
data (Figure 5. ) makes the process of metastases 
classification difficult; none of the run-length coding, co-
occurrence matrices, local binary patterns or Fourier-based 
methods has provided relevant features. Therefore, only 
local mean intensities could have been so far considered. 
Verified differences of local mean intensity within the 
metastatic tissues with respect to the surrounding healthy 

tissue enabled us to use the classification model based on 
Bayesian distribution combined with Markov random field 
(MRF) approach [14], [15]. It is advantageous that this 
model is not sensitive to noise in the image data.  

 

Figure 5.  Well visible osteolytic (left) and osteoblastic (right) metastases  

The MRF approach requires knowledge of the intensity 
distribution of the healthy tissue, approximated by Gauss 
curve. Due to known differences among individual types of 
vertebrae, their parameters (mean intensities and variances) 
should be experimentally determined by averaging for each 
type of  vertebra individually (as the mean values in TABLE 
III. for contrast enhanced CT data).   

TABLE III.  MEAN INTENSITY (IN SCALE OF 255 )OF HEALTHY TISSUE 

FOR INDIVIDUAL TYPES OF VERTEBRA (CE DATA) 

Cervical  1 2 3 4 5 6 7 8     

h 84 84 84 84 83 83 82 82     

Thoracic 9 10 11 12 13 14 15 16 17 18 19 20 

h 81 81 80.5 80.5 80.5 80.5 80 80 80 80 79.5 79.5 

Lumbar 21 22 23 24 25        

h 79.5 79.5 79 79 79        

  

This plays a crucial role in tumor detection and 
classification by the MRF approach optimizing a certain 
merit function based on the Bayesian approach; the tissue is 
locally classified into three classes (Figure 6. ): osteolytic 
metastases, osteoblastic metastases and healthy tissue.  The 
parameters of the merit function had to be determined 
experimentally, similarly as the parameters of the used 
optimization method (Metropolis dynamic), utilizing the 
“ground truth” based on classification by medical experts.   

 

Figure 6.  Curves showing the distribution of initial labels (I - osteolytic, II 

- healthy and III - osteoblastic 
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Bayesian classification utilizing the MRF approach 
allows the tissue classification independently on the spatial 
extent of the metastases, which is important for the tumor 
detection, particularly in initial phases of the illness.  

IV. RESULTS  

The final goal of the process is to segment and classify 
bone lesions in the 3D CT data, as can be seen on a slice in 
Figure 7.  

 

Figure 7.  Classification of both types of tumors segmented by MRF based 

classification method (left: manual expert classification; right: MRF 

classification). Uncertainty of decission base is obvious.  

Each of both parts of the analysis – spine segmentation 
and lesion classification – has been thoroughly tested in 
different aspects with rather convincing results. Only very 
summarizing results can be mentioned here.  

For the segmentation phase, 320 vertebral bodies were 
segmented with rate of accurate results in 82 % with 
moderately deformed vertebrae and in 53% in heavily 
distorted ones. Similarly, small local inaccuracies have been 
found in about 10% (28% in the last group).  It seems to 
surpass the so far reported results. 

With respect to the method of lesion analysis, it is 
positive that the presented algorithm is able to classify 
metastases of various sizes; from 5 voxels up to many 
hundreds of voxels. The sensitivity and specificity of the 
lesion analysis was evaluated separately for hypo-dense 
metastases with sensitivity 55.7% and specificity 91.4%; 
similarly  for hyper-dense metastases they were 63.5% and 
95.1%, respectively.  

V. CONCLUSION 

The developed method of spinal lesion detection and 

classification corresponds to the expectations, considering  

the generic level of reliability of visual expert evaluation. 

The method was declared, by medical experts, satisfactory 

for automatic classification of osteolytic and osteoblastic 

metastases within the spine. Namely its ability to detect very 

small lesions might be an important feature possibly enabling  

diagnosing even the initial phases of the illness.       
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